论文标题

在具有一个正偏心征值的图表上

On the graphs having at most one positive eccentricity eigenvalue

论文作者

Sorgun, Sezer, Küçük, Hakan

论文摘要

图$ g $的偏心率(抗ADJACINCY)矩阵$ \ varepsilon(g)$是通过在每行和每一列中保留偏心率来从距离矩阵中获得的。该矩阵首先由Wang等人在2018年定义。 \ cite {1}。在本文中,我们表征了最多具有$ \ varepsilon(g)$的正征值的图表。

The eccentricity (anti-adjacency) matrix $\varepsilon(G)$ of a graph $G$ is obtained from the distance matrix by retaining the eccentricities in each row and each column. This matrix is first defined in 2018 by Wang et al. \cite{1}. In this paper we have characterized the graphs which have at most one (hence exactly) positive eigenvalue of $\varepsilon(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源