论文标题

学习几何形状 - 符合意义的表示,以互补的理解3D对象点云

Learning Geometry-Disentangled Representation for Complementary Understanding of 3D Object Point Cloud

论文作者

Xu, Mutian, Zhang, Junhao, Zhou, Zhipeng, Xu, Mingye, Qi, Xiaojuan, Qiao, Yu

论文摘要

在2D图像处理中,一些尝试将图像分解为高频和低频组件,分别描述边缘和光滑零件。同样,椅子的边界和座位区域等3D物体的轮廓面积和平坦面积描述了不同但也互补的几何形状。但是,这种调查在以前的深层网络中丢失,这些网络通过直接处理所有点或局部贴片来理解点云。为了解决这个问题,我们提出了几何形状 - 触发性注意网络(GDANET)。 GDANET将几何形状 - 二键模块引入了动态解开点云中,分别以3D对象的轮廓和平坦部分,分别用尖锐而柔和的变化成分表示。然后,Gdanet利用了尖锐的互补注意模块,该模块将尖锐而温和的变化组件的特征视为两个整体表示,并向它们付出了不同的关注,同时分别将它们与原始点云特征融合在一起。通过这种方式,我们的方法从两个不同的分离组件中捕获并完善了整体和互补的3D几何语义,以补充局部信息。对3D对象分类和分割基准的广泛实验表明,GDANET可以实现具有较少参数的最新技术。代码在https://github.com/mutianxu/gdanet上发布。

In 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, describe different but also complementary geometries. However, such investigation is lost in previous deep networks that understand point clouds by directly treating all points or local patches equally. To solve this problem, we propose Geometry-Disentangled Attention Network (GDANet). GDANet introduces Geometry-Disentangle Module to dynamically disentangle point clouds into the contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components. Then GDANet exploits Sharp-Gentle Complementary Attention Module that regards the features from sharp and gentle variation components as two holistic representations, and pays different attentions to them while fusing them respectively with original point cloud features. In this way, our method captures and refines the holistic and complementary 3D geometric semantics from two distinct disentangled components to supplement the local information. Extensive experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters. Code is released on https://github.com/mutianxu/GDANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源