论文标题
一类非均匀符号的非局部方程的最大高度波
Waves of maximal height for a class of nonlocal equations with inhomogeneous symbols
论文作者
论文摘要
在本文中,我们考虑了一类非局部方程,其中卷积内核由Bessel的潜在符号$α$以$α> 1 $给出。根据卷积操作员的属性,我们采用全球分叉技术来显示最高,甚至$2π$的周期旅行波解决方案。事实证明,这波的规律性完全是Lipschitz。
In this paper, we consider a class of nonlocal equations where the convolution kernel is given by a Bessel potential symbol of order $α$ for $α> 1$. Based on the properties of the convolution operator, we apply a global bifurcation technique to show the existence of a highest, even, $2π$-periodic traveling-wave solution. The regularity of this wave is proved to be exactly Lipschitz.