论文标题
基于感知的时间逻辑计划不确定语义图
Perception-Based Temporal Logic Planning in Uncertain Semantic Maps
论文作者
论文摘要
本文解决了具有部分未知语义的环境中的多机器人计划问题。假定环境具有已知的几何结构(例如墙壁),并由具有不确定位置和类别的静态标记的地标占据。这种建模方法导致语义大满贯算法产生的不确定语义图。我们的目标是为配备嘈杂感知系统的机器人设计控制政策,以便他们可以完成由全球时间逻辑规范捕获的协作任务。为了指定说明环境和感知不确定性的任务,我们采用了一个线性时间逻辑(LTL)的片段,称为Co-Safe LTL,在基于感知的原子谓词建模概率满意度要求上定义了。基于感知的LTL计划问题引起了一个最佳的控制问题,该问题通过一种基于新型采样的算法解决,该算法生成了开放环控制策略,该策略可在线更新以适应不断学习的语义图。我们提供了广泛的实验,以证明拟议的规划体系结构的效率。
This paper addresses a multi-robot planning problem in environments with partially unknown semantics. The environment is assumed to have known geometric structure (e.g., walls) and to be occupied by static labeled landmarks with uncertain positions and classes. This modeling approach gives rise to an uncertain semantic map generated by semantic SLAM algorithms. Our goal is to design control policies for robots equipped with noisy perception systems so that they can accomplish collaborative tasks captured by global temporal logic specifications. To specify missions that account for environmental and perceptual uncertainty, we employ a fragment of Linear Temporal Logic (LTL), called co-safe LTL, defined over perception-based atomic predicates modeling probabilistic satisfaction requirements. The perception-based LTL planning problem gives rise to an optimal control problem, solved by a novel sampling-based algorithm, that generates open-loop control policies that are updated online to adapt to a continuously learned semantic map. We provide extensive experiments to demonstrate the efficiency of the proposed planning architecture.