论文标题
Schur-weyl双重性的张量符号能力
Schur-Weyl duality for tensor powers of the Burau representation
论文作者
论文摘要
Artin的辫子组$ b_n $由$σ_1,\ dots,σ_{n-1} $生成,但要遵守关系\ [σ_iσ_{i+1}σ_i=σ_i=σ_{i+1}σ_i= _iσ_i+1} {i+1} i+1},\ quad = _i = = | I-J |> 1。 \ \]对于复杂参数$ q_1,q_2 $,以至于$ q_1q_2 \ ne 0 $,组$ b_n $在向量空间$ \ mathbf {e} = \ sum_i \ sum_i \ sum_i \ mathbb {c} \ mathbf {c} \ mathbf {e} _i $ co {e} _i $ \ Mathbf { \ Mathbf { \ end {chater*}此表示形式是(略有概括)burau表示形式。如果$ q = -q_2/q_1 $不是统一的根源,我们表明,$ \ mathbf {e}^{\ otimes r} $的所有内态的代序p_1(\ Mathbf { \ Mathbf {e} _i \ otimes \ Mathbf {e} _ {J_2} \ otimes \ cdots \ otimes \ otimes \ Mathbf {e} _ {j_r}。等效地,作为$(\ Mathbb {c} b_n,\ Mathcal {p}'_ r([n] _q))$ - bimodule,$ \ m m缩分区代数$ \ mathcal {p} _r([n] _q)上的$ 2R $ nodes in parameter $ [n] _q = 1+q+q+q+q+q^{n-1} $,isomorphic insomorphic to semigroup Algebra and rok monoic and。
Artin's braid group $B_n$ is generated by $σ_1, \dots, σ_{n-1}$ subject to the relations \[ σ_i σ_{i+1} σ_i = σ_{i+1} σ_i σ_{i+1}, \quad σ_iσ_j = σ_j σ_i \text{ if } |i-j|>1. \] For complex parameters $q_1,q_2$ such that $q_1q_2 \ne 0$, the group $B_n$ acts on the vector space $\mathbf{E} = \sum_i \mathbb{C} \mathbf{e}_i$ with basis $\mathbf{e}_1, \dots, \mathbf{e}_n$ by \begin{gather*} σ_i \cdot \mathbf{e}_i = (q_1+q_2)\mathbf{e}_i + q_1\mathbf{e}_{i+1}, \quad σ_i \cdot \mathbf{e}_{i+1} = -q_2\mathbf{e}_i, \\ σ_i \cdot \mathbf{e}_j = q_1 \mathbf{e}_j \text{ if } j \ne i,i+1. \end{gather*} This representation is (a slight generalization of) the Burau representation. If $q = -q_2/q_1$ is not a root of unity, we show that the algebra of all endomorphisms of $\mathbf{E}^{\otimes r}$ commuting with the $B_n$-action is generated by the place-permutation action of the symmetric group $S_r$ and the operator $p_1$, given by \[ p_1(\mathbf{e}_{j_1} \otimes \mathbf{e}_{j_2} \otimes \cdots \otimes \mathbf{e}_{j_r}) = q^{j_1-1} \, \sum_{i=1}^n \mathbf{e}_i \otimes \mathbf{e}_{j_2} \otimes \cdots \otimes \mathbf{e}_{j_r} . \] Equivalently, as a $(\mathbb{C} B_n, \mathcal{P}'_r([n]_q))$-bimodule, $\mathbf{E}^{\otimes r}$ satisfies Schur--Weyl duality, where $\mathcal{P}'_r([n]_q)$ is a certain subalgebra of the partition algebra $\mathcal{P}_r([n]_q)$ on $2r$ nodes with parameter $[n]_q = 1+q+\cdots + q^{n-1}$, isomorphic to the semigroup algebra of the "rook monoid" studied by W. D. Munn, L. Solomon, and others.