论文标题

深度学习和全球工作空间理论

Deep Learning and the Global Workspace Theory

论文作者

VanRullen, Rufin, Kanai, Ryota

论文摘要

深度学习的最新进展使人工智能(AI)在许多感觉,感知,语言或认知任务中都能达到人类水平的表现。但是,对新颖的,受脑启发的认知体系结构的需求日益增长。全球工作空间理论是指一个大规模的系统,该系统将信息集成和分配信息在专用模块网络之间,以创建高级形式的认知和意识。我们认为,使用深度学习技术考虑该理论的明确实现的时机已经成熟了。我们提出了一个基于多个潜在空间之间无监督神经翻译的路线图(在不同的感觉输入和/或模态上训练了不同的任务的神经网络),以创建一个独特的Amodal全球潜在工作空间(GLW)。综述了GLW的潜在功能优势,以及神经科学的影响。

Recent advances in deep learning have allowed Artificial Intelligence (AI) to reach near human-level performance in many sensory, perceptual, linguistic or cognitive tasks. There is a growing need, however, for novel, brain-inspired cognitive architectures. The Global Workspace theory refers to a large-scale system integrating and distributing information among networks of specialized modules to create higher-level forms of cognition and awareness. We argue that the time is ripe to consider explicit implementations of this theory using deep learning techniques. We propose a roadmap based on unsupervised neural translation between multiple latent spaces (neural networks trained for distinct tasks, on distinct sensory inputs and/or modalities) to create a unique, amodal global latent workspace (GLW). Potential functional advantages of GLW are reviewed, along with neuroscientific implications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源