论文标题

基于智能手机用户的使用模式建立能源消耗模型

Building Energy Consumption Models Based On Smartphone User's Usage Patterns

论文作者

Neto, Antonio Sa Barreto, Farias, Felipe, Mialaret, Marco Aurelio Tomaz, Cartaxo, Bruno, Lima, Priscila Alves, Maciel, Paulo

论文摘要

智能手机在日常任务中的使用量不断增加,这是许多关于能耗表征的研究,旨在提高智能手机设备的有效性并增加用户使用时间。在这种情况下,必须研究能够表征用户使用模式的机制,因此可以对智能手机的组件进行调整以促进降低能源消耗的最佳用户体验。这项研究的目的是基于用户使用模式建立一个能源消耗模型,旨在提供应用程序开发人员和自动化优化使用的最佳准确模型。为了开发能源消耗模型,我们建立了一种方法来识别智能手机能源消耗中影响最大的组件,并确定每个有影响力的设备的状态。除此之外,我们还建立了一种方法来证明使用不准确硬件构建的模型的鲁棒性以及评估构建模型的准确性的策略。在训练和测试每种策略以根据用户使用并执行Nemenyi测试对能源消耗进行建模之后,我们证明,当智能手机的平均功率为1970.1MW时,有可能获得158.57MW的平均绝对误差。一些研究表明,领先的智能手机的工作量是用户。基于这一事实,我们开发了一种自动模型构建方法,该方法能够分析用户的使用数据并构建智能模型,该模型可以根据用户的使用模式估算智能手机的能源消耗。借助自动型号构建方法,我们可以采用策略来最大程度地减少排干电池的组件的使用。

The increasing usage of smartphones in everyday tasks has been motivated many studies on energy consumption characterization aiming to improve smartphone devices' effectiveness and increase user usage time. In this scenario, it is essential to study mechanisms capable of characterizing user usage patterns, so smartphones' components can be adapted to promote the best user experience with lower energy consumption. The goal of this study is to build an energy consumption model based on user usage patterns aiming to provide the best accurate model to be used by application developers and automated optimization. To develop the energy consumption models, we established a method to identify the components with the most influence in the smartphone's energy consumption and identify the states of each influential device. Besides that, we established a method to prove the robustness of the models constructed using inaccurate hardware and a strategy to assess the accuracy of the model built. After training and testing each strategy to model the energy consumption based on the user's usage and perform the Nemenyi test, we demonstrated that it is possible to get a Mean Absolute Error of 158.57mW when the smartphone's average power is 1970.1mW. Some studies show that the leading smartphone's workload is the user. Based on this fact, we developed an automatic model building methodology that is capable of analyzing the user's usage data and build smart models that can estimate the smartphone's energy consumption based on the user's usage pattern. With the automatic model building methodology, we can adopt strategies to minimize the usage of components that drain the battery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源