论文标题

巨大:可拖动且强大的贝叶斯学习多维仪器变量模型

MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional Instrumental Variable Models

论文作者

Bucur, Ioan Gabriel, Claassen, Tom, Heskes, Tom

论文摘要

最近的巨大,多维数据集的可用性,例如全基因组协会研究(GWAS)引起的,为加强因果推断提供了许多机会。一种流行的方法是利用这些多维测量作为仪器变量(工具)来改善其他变量对之间的因果效应估计。不幸的是,由于棘手的模型空间,我们无法直接测试这些候选者中的哪些是有效的,因此在一组候选人中寻找适当的乐器是一项艰巨的任务,因此大多数现有的搜索方法依赖于过于严格的建模假设,要么未能捕获选择过程中固有的模型不确定。我们表明,只要至少某些候选人是(接近)有效的,而在不知道哪些候选人的情况下,他们仍然对目标相互作用构成足够的限制,以获得可靠的因果效应估计。我们提出了一种一般有效的因果推理算法,该算法通过对最有希望的多维仪器变量模型进行平均模型来解释模型不确定性,同时在数据生成过程中采用较弱的假设。我们通过对模拟和现实世界数据的实验结果展示了算法的效率,鲁棒性和预测性能。

The recent availability of huge, many-dimensional data sets, like those arising from genome-wide association studies (GWAS), provides many opportunities for strengthening causal inference. One popular approach is to utilize these many-dimensional measurements as instrumental variables (instruments) for improving the causal effect estimate between other pairs of variables. Unfortunately, searching for proper instruments in a many-dimensional set of candidates is a daunting task due to the intractable model space and the fact that we cannot directly test which of these candidates are valid, so most existing search methods either rely on overly stringent modeling assumptions or fail to capture the inherent model uncertainty in the selection process. We show that, as long as at least some of the candidates are (close to) valid, without knowing a priori which ones, they collectively still pose enough restrictions on the target interaction to obtain a reliable causal effect estimate. We propose a general and efficient causal inference algorithm that accounts for model uncertainty by performing Bayesian model averaging over the most promising many-dimensional instrumental variable models, while at the same time employing weaker assumptions regarding the data generating process. We showcase the efficiency, robustness and predictive performance of our algorithm through experimental results on both simulated and real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源