论文标题

全球每日1公里的土地表面降水,基于云覆盖的降尺度

Global daily 1km land surface precipitation based on cloud cover-informed downscaling

论文作者

Karger, Dirk Nikolaus, Wilson, Adam M., Mahony, Colin, Zimmermann, Niklaus E., Jetz, Walter

论文摘要

高分辨率气候数据对于环境研究中的许多应用至关重要。在这里,我们为每日降水开发了一种新的半机械缩减方法,该方法结合了高分辨率(30 ARC SEC)卫星衍生的云频率。降尺度算法结合了地形预测因子,例如风场,山谷博览会和边界层高度,并具有随后的偏置校正。我们将该方法应用于ERA5降水存档和MODIS月度云覆盖频率,以在2003年以1公里的分辨率开发每日栅格降水时间序列。将预测与现有网格产品和站数据进行比较表明,在预测降水时,缩放数据的时空性能有所改善。从地形上高度异质区域对云覆盖校正的区域审查进一步证实,与其他沉淀产品(例如数值天气模型)相比,Chelsa-Earthenv的性能很好。与ERA5相比,提出的Chelsa-Earthenv每日降水产品提高了时间准确性,空间精度的额外提高,并且可以更好地表示复杂地形的降水量

High-resolution climatic data are essential to many applications in environmental research. Here we develop a new semi-mechanistic downscaling approach for daily precipitation that incorporates high resolution (30 arc sec) satellite-derived cloud frequency. The downscaling algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. We apply the method to the ERA5 precipitation archive and MODIS monthly cloud cover frequency to develop a daily gridded precipitation time series in 1km resolution for the years 2003 onward. Comparison of the predictions with existing gridded products and station data indicates an improvement in the spatio-temporal performance of the downscaled data in predicting precipitation. Regional scrutiny of the cloud cover correction from a topographically highly heterogeneous area further confirms that CHELSA-EarthEnv performs well in comparison to other precipitation products such as numerical weather models. The presented CHELSA-EarthEnv daily precipitation product improves the temporal accuracy compared to ERA5 with an additional improved in spatial accuracy and much better representation of precipitation in complex terrain

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源