论文标题
在不可压缩的液体求解器中回收增强的拉格朗日预处理
Recycling augmented Lagrangian preconditioner in an incompressible fluid solver
论文作者
论文摘要
本文讨论了矩阵分解作为增强的拉格朗日(AL)中的构件和非对称鞍点线性代数系统的修改的AL预处理。该策略用于解决二维不可压缩的流体问题,而效率率与雷诺数无关。然后测试求解器以模拟表面流体的运动,这是一个2D流动的示例,该示例是出于对不可延迟的粘性膜的横向流动性的兴趣。数值示例包括在球体和圆环上构成的开尔文 - 螺旋不稳定性问题。得出了一些对Al预调整器的新特征值估计。
The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for non-symmetric saddle point linear algebraic systems. The strategy is applied to solve two-dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate motion of a surface fluid, an example of a 2D flow motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin--Helmholtz instability problem posed on the sphere and on the torus. Some new eigenvalue estimates for the AL preconditioner are derived.