论文标题
调查地面臭氧形成:台湾的案例研究
Investigating Ground-level Ozone Formation: A Case Study in Taiwan
论文作者
论文摘要
对流层臭氧(O3)是一种温室气体,可以吸收热量并在极端热浪期间使天气变热。此外,它是一种有影响力的地面空气污染物,可严重损害环境。因此,评估与O3形成过程有关的各种因素的重要性至关重要。但是,由可用气候模型模拟的O3在不同地方表现出很大的差异,表明模型在正确解释O3地层过程中的不足。在本文中,我们旨在识别和理解各种因素对O3形成的影响,并预测不同污染和气候变化情景下的O3浓度。我们使用六种监督方法使用14个气象和化学变量估算观察到的O3。我们发现,基于深的神经网络(DNN)和长短期记忆(LSTM)模型可以准确预测O3浓度。我们还证明了几个变量在此预测任务中的重要性。结果表明,虽然氮氧化物对预测O3有负贡献,但太阳辐射具有显着的积极贡献。此外,我们将两个最佳模型应用于O3预测,在不同的全球变暖和减少污染方案下,以改善O3减少的决策决策。
Tropospheric ozone (O3) is a greenhouse gas which can absorb heat and make the weather even hotter during extreme heatwaves. Besides, it is an influential ground-level air pollutant which can severely damage the environment. Thus evaluating the importance of various factors related to the O3 formation process is essential. However, O3 simulated by the available climate models exhibits large variance in different places, indicating the insufficiency of models in explaining the O3 formation process correctly. In this paper, we aim to identify and understand the impact of various factors on O3 formation and predict the O3 concentrations under different pollution-reduced and climate change scenarios. We employ six supervised methods to estimate the observed O3 using fourteen meteorological and chemical variables. We find that the deep neural network (DNN) and long short-term memory (LSTM) based models can predict O3 concentrations accurately. We also demonstrate the importance of several variables in this prediction task. The results suggest that while Nitrogen Oxides negatively contributes to predicting O3, solar radiation makes a significantly positive contribution. Furthermore, we apply our two best models on O3 prediction under different global warming and pollution reduction scenarios to improve the policy-making decisions in the O3 reduction.