论文标题
通过对预后评分的线性调整提高随机试验估计的效率
Increasing the efficiency of randomized trial estimates via linear adjustment for a prognostic score
论文作者
论文摘要
从随机实验中估计因果关系是临床研究的核心。在这些分析中减少统计不确定性是统计学家的重要目标。注册机构,先前的试验和健康记录构成了越来越多的有关护理标准患者的历史数据汇编,可能可以利用这一目的。但是,大多数用于历史借贷的方法通过牺牲严格的I型错误率控制来减少差异。在这里,我们建议使用历史数据,以利用线性协变量调整以提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上训练预后模型,然后使用线性回归估算治疗效果,同时调整试验对象的预测结果(其预后分数)。我们证明,在某些条件下,这种预后的协变量调整程序达到了大量估计器之间的最小差异。当不满足这些条件时,预后协变量调整仍然比原始协变量调整更有效,并且效率的增益与衡量预后模型的预测准确性成正比,超出了与原始协变量的线性关系。我们证明了使用模拟的方法以及对阿尔茨海默氏病临床试验的重新分析,并观察到均值误差和估计方差的有意义减少。最后,我们为渐近方差提供了一个简化的公式,该公式可以实现这些收益的能力计算。当使用预后模型解释临床上现实百分比的结果差异时,可以实现样本量减少在10%至30%之间。
Estimating causal effects from randomized experiments is central to clinical research. Reducing the statistical uncertainty in these analyses is an important objective for statisticians. Registries, prior trials, and health records constitute a growing compendium of historical data on patients under standard-of-care that may be exploitable to this end. However, most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control. Here, we propose a use of historical data that exploits linear covariate adjustment to improve the efficiency of trial analyses without incurring bias. Specifically, we train a prognostic model on the historical data, then estimate the treatment effect using a linear regression while adjusting for the trial subjects' predicted outcomes (their prognostic scores). We prove that, under certain conditions, this prognostic covariate adjustment procedure attains the minimum variance possible among a large class of estimators. When those conditions are not met, prognostic covariate adjustment is still more efficient than raw covariate adjustment and the gain in efficiency is proportional to a measure of the predictive accuracy of the prognostic model above and beyond the linear relationship with the raw covariates. We demonstrate the approach using simulations and a reanalysis of an Alzheimer's Disease clinical trial and observe meaningful reductions in mean-squared error and the estimated variance. Lastly, we provide a simplified formula for asymptotic variance that enables power calculations that account for these gains. Sample size reductions between 10% and 30% are attainable when using prognostic models that explain a clinically realistic percentage of the outcome variance.