论文标题

拓扑不相等的量化

Topologically inequivalent quantizations

论文作者

Acquaviva, Giovanni, Iorio, Alfredo, Smaldone, Luca

论文摘要

我们在标量量子场理论中讨论了量化代数,规范换向关系的表示,当涡流类型的拓扑缺陷是通过nambu-goldstoneton颗粒的凝结形成的。我们发现,为了使系统存在物理不相交阶段所需的不相等表示,通常不需要通常的热力学极限。由于相位空间的非平凡拓扑结构,这是一种新型的不等性,它出现在有限体积的情况下。我们认为这是迈向拓扑和热力学阶段统一视图的第一步,并在此处发表评论此情况可能应用于量子重力。

We discuss the representations of the algebra of quantization, the canonical commutation relations, in a scalar quantum field theory with spontaneously broken U(1) internal symmetry, when a topological defect of the vortex type is formed via the condensation of Nambu-Goldstone particles. We find that the usual thermodynamic limit is not necessary in order to have the inequivalent representations needed for the existence of physically disjoint phases of the system. This is a new type of inequivalence, due to the nontrivial topological structure of the phase space, that appears at finite volume. We regard this as a first step towards a unifying view of topological and thermodynamic phases, and offer here comments on the possible application of this scenario to quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源