论文标题

大规模结构的$ n $ th订单拉格朗日前型型号

An $n$-th order Lagrangian Forward Model for Large-Scale Structure

论文作者

Schmidt, Fabian

论文摘要

提出了拉格朗日扰动理论(LPT)中任意顺序的物质和有偏见的示踪剂的正向模型。正向模型在扰动中以任何给定的顺序包含完整的LPT位移字段,以及该顺序的所有相关偏置运算符和衍生物中的领先顺序。该构建是针对任何扩展历史记录完成的,并且不依赖于爱因斯坦 - de保姆的近似。还包括大量的高衍生偏置操作员。作为验证测试​​,我们比较了$ n $ lpt预测的物质密度字段,以及使用相同初始条件的N体模拟。对于在初始条件下使用截止的仿真,我们发现subpercent协议至$ k \ sim 0.2 h \,{\ rm mpc}^{ - 1} $。在允许有效的音速时,我们还可以找到无截止的完整模拟的次级协议,包括功率谱和非线性$σ_8$ - 定位。最近的一篇论文(Arxiv:2009.14176)已经提出了偏见的示踪剂(Halos)的应用。

A forward model of matter and biased tracers at arbitrary order in Lagrangian perturbation theory (LPT) is presented. The forward model contains the complete LPT displacement field at any given order in perturbations, as well as all relevant bias operators at that order and leading order in derivatives. The construction is done for any expansion history and does not rely on the Einstein-de Sitter approximation. A large subset of higher-derivative bias operators is also included. As validation test, we compare the $n$LPT-predicted matter density field and that from N-body simulations using the same initial conditions. For simulations using a cutoff in the initial conditions, we find subpercent agreement up to scales of $k\sim 0.2 h\,{\rm Mpc}^{-1}$. We also find subpercent agreement with full simulations without cutoff, both for the power spectrum and nonlinear $σ_8$-inference, when allowing for the effective sound speed. The application to biased tracers (halos) has already been presented in a recent paper (arXiv:2009.14176).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源