论文标题

跨度高度高度树的狄拉克型条件

Dirac-type conditions for spanning bounded-degree hypertrees

论文作者

Pavez-Signé, Matías, Sanhueza-Matamala, Nicolás, Stein, Maya

论文摘要

我们证明,对于固定的$ k $,每$ n $顶点上的每一个$ k $均匀的超图和至少$ n/2+o(n)$的最低代码,包含每个跨越$ k $的每个跨度$ k $ - 有界顶点学位的树,作为子\ - 段。这概括了Komlós,Sárközy和Szemerédi的众所周知的结果。我们的结果在渐近上是敏锐的。我们还证明了我们的结果扩展到满足某些弱的准级别条件的超图。

We prove that for fixed $k$, every $k$-uniform hypergraph on $n$ vertices and of minimum codegree at least $n/2+o(n)$ contains every spanning tight $k$-tree of bounded vertex degree as a sub\-graph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源