论文标题

使用贝叶斯非参数方法来估计高杂物中的测量值

Use of Bayesian Nonparametric methods for Estimating the Measurements in High Clutter

论文作者

Moraffah, Bahman, Richmond, Christ, Moraffah, Raha, Papandreou-Suppappola, Antonia

论文摘要

在混乱环境中对目标的强大跟踪是一项重要且具有挑战性的任务。近年来,提出了最近的邻居方法和概率数据关联过滤器。但是,随着测量数量的增加,这些方法的性能会降低。在本文中,我们提出了一种强大的生成方法,可以有效地对多个传感器测量值进行建模,以在高杂物的环境中跟踪移动目标。我们假设一个时间依赖的测量值包括具有未知来源的传感器观测值,其中一些可能只包含没有其他信息的混乱。我们通过采用贝叶斯非参数建模,在高杂物环境中稳健,准确地估计移动目标的轨迹,并具有未知数的剪断。特别是,我们采用一类联合贝叶斯非参数模型来构建目标和混乱测量的联合先验分布,从而遵循条件分布遵循差异的过程。然后,在贝叶斯跟踪器中使用了目标测量的边缘化的dirichlet过程,以估计动态变化的目标状态。我们通过实验表明,我们提出的框架的跟踪性能和有效性通过抑制高杂波测量而提高。此外,我们表明我们所提出的方法优于现有方法,例如最近的邻居和概率数据关联过滤器。

Robust tracking of a target in a clutter environment is an important and challenging task. In recent years, the nearest neighbor methods and probabilistic data association filters were proposed. However, the performance of these methods diminishes as the number of measurements increases. In this paper, we propose a robust generative approach to effectively model multiple sensor measurements for tracking a moving target in an environment with high clutter. We assume a time-dependent number of measurements that include sensor observations with unknown origin, some of which may only contain clutter with no additional information. We robustly and accurately estimate the trajectory of the moving target in a high clutter environment with an unknown number of clutters by employing Bayesian nonparametric modeling. In particular, we employ a class of joint Bayesian nonparametric models to construct the joint prior distribution of target and clutter measurements such that the conditional distributions follow a Dirichlet process. The marginalized Dirichlet process prior of the target measurements is then used in a Bayesian tracker to estimate the dynamically-varying target state. We show through experiments that the tracking performance and effectiveness of our proposed framework are increased by suppressing high clutter measurements. In addition, we show that our proposed method outperforms existing methods such as nearest neighbor and probability data association filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源