论文标题

捕获级联:跨性别方法延迟分叉

Capturing the cascade: a transseries approach to delayed bifurcations

论文作者

Aniceto, Inês, Hasenbichler, Daniel, Howls, Christopher J., Lustri, Christopher J.

论文摘要

通过包括其他基础元素,例如指数和对数,跨系列扩展基于普通的功率系列方法。然后,可以使用替代性求和方法来“恢复”序列以获得更有效的近似值,并已成功地在连续线性和非线性,单一和多维问题的研究中广泛应用。特别是,一种称为跨性膜片重新召开的方法可用于描述在多个尺度上发生的连续行为,而无需渐近匹配。在这里,我们在离散系统中应用跨性别重新召集,并表明它可用于自然,有效地描述离散的延迟分叉或“ canards”,或在包含延迟的周期性双分叉延迟的logistic映射的奇异变体中。我们使用跨副膜片重新召集来近似溶液,并描述跨分叉的溶液的行为。这种方法具有两个重要的优势:即使在多个分叉中,它也可以以系统的方式应用,并且指数乘数编码有关分叉的信息,这些信息用于解释解决方案行为中看到的效果。

Transseries expansions build upon ordinary power series methods by including additional basis elements such as exponentials and logarithms. Alternative summation methods can then be used to "resum" series to obtain more efficient approximations, and have been successfully widely applied in the study of continuous linear and nonlinear, single and multidimensional problems. In particular, a method known as transasymptotic resummation can be used to describe continuous behaviour occurring on multiple scales without the need for asymptotic matching. Here we apply transasymptotic resummation to discrete systems and show that it may be used to naturally and efficiently describe discrete delayed bifurcations, or "canards", in singularly-perturbed variants of the logistic map which contain delayed period-doubling bifurcations. We use transasymptotic resummation to approximate the solutions, and describe the behaviour of the solution across the bifurcations. This approach has two significant advantages: it may be applied in systematic fashion even across multiple bifurcations, and the exponential multipliers encode information about the bifurcations that are used to explain effects seen in the solution behaviour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源