论文标题
多人:多指graSps的生成粗到精细采样
Multi-FinGAN: Generative Coarse-To-Fine Sampling of Multi-Finger Grasps
论文作者
论文摘要
尽管存在许多用平行爪抓手来操纵刚性物体的方法,但用多指机器人手抓住仍然是一个尚未开发的研究主题。在几种手指的额外自由度上的无碰撞轨迹的推理和计划是一个重要的挑战,到目前为止,该挑战涉及计算上的昂贵和缓慢的过程。在这项工作中,我们提出了一种多芬安,这是一种快速生成的多指抓握改进方法,该方法在大约一秒钟内直接从RGB-D图像中综合了高质量的grasps。我们通过以端到端方式进行训练来实现这一目标,该模型由分类网络组成,该模型根据特定的分类法和细化网络区分了掌握类型,并产生精致的抓握姿势和关节角度。我们通过实验验证和基准测试我们的方法,以在模拟中的790个grasps上的标准抓取方法和在真正的Franka Emika Panda上进行20个掌握方法。使用我们的方法的所有实验结果都在掌握质量指标和掌握成功率方面都表现出一致的改进。值得注意的是,我们的方法比基线要快20-30倍,这一重大改进为基于反馈的GRASP重新计划和任务提供信息的掌握打开了大门。代码可从https://irobotics.aalto.fi/multi-fingan/获得。
While there exists many methods for manipulating rigid objects with parallel-jaw grippers, grasping with multi-finger robotic hands remains a quite unexplored research topic. Reasoning and planning collision-free trajectories on the additional degrees of freedom of several fingers represents an important challenge that, so far, involves computationally costly and slow processes. In this work, we present Multi-FinGAN, a fast generative multi-finger grasp sampling method that synthesizes high quality grasps directly from RGB-D images in about a second. We achieve this by training in an end-to-end fashion a coarse-to-fine model composed of a classification network that distinguishes grasp types according to a specific taxonomy and a refinement network that produces refined grasp poses and joint angles. We experimentally validate and benchmark our method against a standard grasp-sampling method on 790 grasps in simulation and 20 grasps on a real Franka Emika Panda. All experimental results using our method show consistent improvements both in terms of grasp quality metrics and grasp success rate. Remarkably, our approach is up to 20-30 times faster than the baseline, a significant improvement that opens the door to feedback-based grasp re-planning and task informative grasping. Code is available at https://irobotics.aalto.fi/multi-fingan/.