论文标题

通过使用深层语义哈希,在基于检索的聊天机器人中超快速,低存储,高效的粗粒粒度选择

Ultra-Fast, Low-Storage, Highly Effective Coarse-grained Selection in Retrieval-based Chatbot by Using Deep Semantic Hashing

论文作者

Lan, Tian, Mao, Xian-Ling, Gao, Xiaoyan, Wei, Wei, Huang, Heyan

论文摘要

我们在基于检索的聊天机器人中研究了粗粒的选择模块。粗粒度选择是基于检索的聊天机器人中的基本模块,该模块构建了一个从整个数据库中的粗糙候选者设置,以加快与客户的交互。到目前为止,有两种用于粗粒的选择模块的方法:(1)稀疏表示; (2)密集表示。据我们所知,基于检索的聊天机器人中这两种方法之间没有系统的比较,在实际情况下哪种方法更好仍然是一个悬而未决的问题。在本文中,我们首先从四个方面进行系统地比较这两种方法:(1)有效性; (2)索引stoarge; (3)搜索时间成本; (4)人类评估。广泛的实验结果表明,密集的表示方法显着优于稀疏表示,但要花费更多的时间和存储职业。为了克服这些致命表示方法的致命弱点,我们提出了一种超快速,低存储和高效的深层语义散发性的粗粒粒度选择方法,称为DSHC模型。具体而言,在我们提出的DSHC模型中,将两个由两个自动编码器模型组成的哈希优化模块堆叠在训练有素的密集表示模型上,并设计了三个损失功能以优化它。哈希优化模块提供的哈希码有效地保留了密集矢量中丰富的语义和相似性信息。广泛的实验结果证明,与稀疏表示相比,我们提出的DSHC模型可以实现更快的速度和更低的存储空间,而与密集表示相比,性能损失有限。此外,我们的源代码已公开发布以供将来的研究。

We study the coarse-grained selection module in retrieval-based chatbot. Coarse-grained selection is a basic module in a retrieval-based chatbot, which constructs a rough candidate set from the whole database to speed up the interaction with customers. So far, there are two kinds of approaches for coarse-grained selection module: (1) sparse representation; (2) dense representation. To the best of our knowledge, there is no systematic comparison between these two approaches in retrieval-based chatbots, and which kind of method is better in real scenarios is still an open question. In this paper, we first systematically compare these two methods from four aspects: (1) effectiveness; (2) index stoarge; (3) search time cost; (4) human evaluation. Extensive experiment results demonstrate that dense representation method significantly outperforms the sparse representation, but costs more time and storage occupation. In order to overcome these fatal weaknesses of dense representation method, we propose an ultra-fast, low-storage, and highly effective Deep Semantic Hashing Coarse-grained selection method, called DSHC model. Specifically, in our proposed DSHC model, a hashing optimizing module that consists of two autoencoder models is stacked on a trained dense representation model, and three loss functions are designed to optimize it. The hash codes provided by hashing optimizing module effectively preserve the rich semantic and similarity information in dense vectors. Extensive experiment results prove that, our proposed DSHC model can achieve much faster speed and lower storage than sparse representation, with limited performance loss compared with dense representation. Besides, our source codes have been publicly released for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源