论文标题

深融合聚类网络

Deep Fusion Clustering Network

论文作者

Tu, Wenxuan, Zhou, Sihang, Liu, Xinwang, Guo, Xifeng, Cai, Zhiping, zhu, En, Cheng, Jieren

论文摘要

深度聚类是数据分析的一项基本但具有挑战性的任务。最近,我们看到了将自动编码器和图形神经网络相结合以利用结构信息以提高性能提高的结构信息的强烈趋势。但是,我们观察到现有文献1)缺乏动态融合机制,无法选择性地整合和完善图表结构的信息和节点属性,以进行共识表示学习; 2)无法从两侧提取信息以获得稳健的目标分布(即“地面图”软标签)。为了解决上述问题,我们提出了一个深层融合聚类网络(DFCN)。具体而言,在我们的网络中,提出了基于相互依赖的学习结构和属性信息融合(SAIF)模块,以明确合并自动编码器和图形自动编码器所学的表示形式,以进行共识表示学习。此外,可靠的目标分配量度和一个促进交叉模式信息开发的三胞胎自我划分策略是为网络培训而设计的。在六个基准数据集上进行的广泛实验表明,所提出的DFCN始终优于最先进的深度聚类方法。

Deep clustering is a fundamental yet challenging task for data analysis. Recently we witness a strong tendency of combining autoencoder and graph neural networks to exploit structure information for clustering performance enhancement. However, we observe that existing literature 1) lacks a dynamic fusion mechanism to selectively integrate and refine the information of graph structure and node attributes for consensus representation learning; 2) fails to extract information from both sides for robust target distribution (i.e., "groundtruth" soft labels) generation. To tackle the above issues, we propose a Deep Fusion Clustering Network (DFCN). Specifically, in our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder for consensus representation learning. Also, a reliable target distribution generation measure and a triplet self-supervision strategy, which facilitate cross-modality information exploitation, are designed for network training. Extensive experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源