论文标题

在2+1维毛螺旋模型中,不均匀相位的调节剂依赖性

Regulator dependence of inhomogeneous phases in the 2+1-dimensional Gross-Neveu model

论文作者

Buballa, Michael, Kurth, Lennart, Wagner, Marc, Winstel, Marc

论文摘要

在非零温度和化学势下,在无限的多种口味的极限上研究了$ 2+1 $时空尺寸的总体空间模型的相图,重点是不均匀相位的存在,其中订单参数$σ$在空间中是不均匀的。为此,我们分析了具有能量偏爱同质配置的稳定性$σ(\ textbf {x})= \barσ= \ textrm {const} $,就小小均匀的波动而言,用两种不同的晶格理论雇用了两种不同的晶格歧视,并定期使用contionuimaum pairi-villars。在晶格场理论中,我们还对有效作用进行了完整的最小化,从而允许对顺序参数进行任意的一维调制。对于所有方法,特别注意截止效应的作用。对于两个晶格离散化之一,未发现不均匀阶段。对于其他晶格离散化以及具有有限的Pauli-Villars截止参数$λ$的连续方法,我们在相图中找到了一个不均匀顺序参数的区域。但是,当$ a $减少或增加$λ$时,这个不均匀的地区缩小,最终在所有非零温度下完全消除了截止温度时的炎症。对于消失的温度,我们发现与早期发现一致的均匀和不均匀溶液的变性提示。

The phase diagram of the Gross-Neveu model in $2+1$ space-time dimensions at non-zero temperature and chemical potential is studied in the limit of infinitely many flavors, focusing on the possible existence of inhomogeneous phases, where the order parameter $σ$ is non-uniform in space. To this end, we analyze the stability of the energetically favored homogeneous configuration $σ(\textbf{x}) = \barσ= \textrm{const}$ with respect to small inhomogeneous fluctuations, employing lattice field theory with two different lattice discretizations as well as a continuum approach with Pauli-Villars regularization. Within lattice field theory, we also perform a full minimization of the effective action, allowing for arbitrary 1-dimensional modulations of the order parameter. For all methods special attention is paid to the role of cutoff effects. For one of the two lattice discretizations, no inhomogeneous phase was found. For the other lattice discretization and within the continuum approach with a finite Pauli-Villars cutoff parameter $Λ$, we find a region in the phase diagram where an inhomogeneous order parameter is favored. This inhomogeneous region shrinks, however, when $a$ is decreased or $Λ$ is increased, and finally diappears for all non-zero temperatures when the cutoff is removed completely. For vanishing temperature, we find hints for a degeneracy of homogeneous and inhomogeneous solutions, in agreement with earlier findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源