论文标题
基于Nyquist-Shannon采样的低复杂性转向响应功率映射
Low-Complexity Steered Response Power Mapping based on Nyquist-Shannon Sampling
论文作者
论文摘要
声源定位的转向响应能力(SRP)方法从光束形式的频率加权输出功率转向一组候选位置的声音场景的地图。同等地,SRP可以用与候选位置的到达时间差异(TDOAS)相等的时间域的杂交互相关(GCC)表示。由于候选位置的密集网格,每个候选位置都需要逆傅立叶变换(IFT)评估,因此常规的SRP表现出较高的计算复杂性。在本文中,我们提出了一种基于Nyquist Shannon采样的低复杂性SRP方法。一方面,一方面,可能的TDOA范围是物理界限的,而另一方面,GCC是有限的,我们在其TDOA间隔周围进行了严格的gcc,并通过插补来近似SRP图。在通常的设置中,样品点的数量可能是比候选位置和频率箱的数量较小的数量级,从而在有限的插值成本下显着减少IFT计算。比较所提出的近似值与常规SRP的模拟表明近似误差和相等的定位性能。 MATLAB和PYTHON实现可在线获得。
The steered response power (SRP) approach to acoustic source localization computes a map of the acoustic scene from the frequency-weighted output power of a beamformer steered towards a set of candidate locations. Equivalently, SRP may be expressed in terms of time-domain generalized cross-correlations (GCCs) at lags equal to the candidate locations' time-differences of arrival (TDOAs). Due to the dense grid of candidate locations, each of which requires inverse Fourier transform (IFT) evaluations, conventional SRP exhibits a high computational complexity. In this paper, we propose a low-complexity SRP approach based on Nyquist-Shannon sampling. Noting that on the one hand the range of possible TDOAs is physically bounded, while on the other hand the GCCs are bandlimited, we critically sample the GCCs around their TDOA interval and approximate the SRP map by interpolation. In usual setups, the number of sample points can be orders of magnitude less than the number of candidate locations and frequency bins, yielding a significant reduction of IFT computations at a limited interpolation cost. Simulations comparing the proposed approximation with conventional SRP indicate low approximation errors and equal localization performance. MATLAB and Python implementations are available online.