论文标题
高海高吉拓扑绝缘子,带有奇数$ \ MATHCAL P \ MATHCAL T $ CORTER CORTER状态
Takagi topological insulator with odd $\mathcal P\mathcal T$ pairs of corner states
论文作者
论文摘要
我们提出了一类新型的拓扑绝缘子,称为Takagi拓扑绝缘子(TTIS),该拓扑拓扑因子(TTIS)受Sublattice对称性和时空反演($ \ MATHCAL P \ MATHCAL T $)对称性的保护。 TTI所需的对称性可以在倒置交换sublattices的任何两部分晶格上实现。保护对称性导致汉密尔顿人的分类空间是单一的对称矩阵,因此可以进行高海的分解。特别是,全球巨石的分解可以(不能在$ 3 $ d($ 2 $ d)球体上进行。在3D中,有一个$ \ mathbb {z} _2 $拓扑不变式,对应于整个布里群区域的Takagi单一统一 - 摩trix因子的均等,其中$ \ Mathbb z_2 $自然来自$ O(N)$ o(n)$的自由度。在2D中,全球巨石分解的障碍物的特征在于另一个$ \ mathbb {z} _2 $拓扑不变的,相当于第二个Stiefel-Whitney编号。对于三阶拓扑阶段,$ 3 $ d TTI的特征是零型零模型的奇偶校验条件,即,总是存在奇数$ \ Mathcal P \ Mathcal P \ Mathcal t $与零模型的角落。此外,对于任何$ \ MATHCAL P \ MATHCAL T $不变样本几何形状,满足奇偶校验条件的角落零模型的所有配置都可以使用相同的非平凡散装拓扑不变性。实际上,边界相图没有蜂窝结构,而没有覆盖距离,其中每个拓扑边界相与特定(跨阶)边界模式模式相关联于与参数空间中某些维度的合理单元相对应。
We present a novel class of topological insulators, termed the Takagi topological insulators (TTIs), which is protected by the sublattice symmetry and spacetime inversion ($\mathcal P\mathcal T$) symmetry. The required symmetries for the TTIs can be realized on any bipartite lattice where the inversion exchanges sublattices. The protecting symmetries lead to the classifying space of Hamiltonians being unitary symmetric matrices, and therefore Takagi's factorization can be performed. Particularly, the global Takagi's factorization can (cannot) be done on a $3$D ($2$D) sphere. In 3D, there is a $\mathbb{Z}_2$ topological invariant corresponding to the parity of the winding number of Takagi's unitary-matrix factor over the entire Brillouin zone, where the $\mathbb Z_2$ nature comes from the $O(N)$ gauge degrees of freedom in Takagi's factorization. In 2D, the obstruction for a global Takagi's factorization is characterized by another $\mathbb{Z}_2$ topological invariant, equivalent to the second Stiefel-Whitney number. For the third-order topological phases, the $3$D TTIs feature a parity condition for corner zero-modes, i.e., there always exist odd $\mathcal P\mathcal T$ pairs of corners with zero-modes. Moreover, for any $\mathcal P\mathcal T$ invariant sample geometry, all configurations of corner zero-modes satisfying the parity condition can exist with the same nontrivial bulk topological invariant. Actually, without closing the bulk gap, the boundary phase diagram have a cellular structure, where each topological boundary phase associated with a particular (cross-order) boundary-mode pattern corresponds to a contractible cell with certain dimension in the parameter space.