论文标题

使用深度学习的无监督行为分析和放大率(UBAM)

Unsupervised Behaviour Analysis and Magnification (uBAM) using Deep Learning

论文作者

Brattoli, Biagio, Buechler, Uta, Dorkenwald, Michael, Reiser, Philipp, Filli, Linard, Helmchen, Fritjof, Wahl, Anna-Sophia, Ommer, Bjoern

论文摘要

运动行为分析对于生物医学研究和临床诊断至关重要,因为它提供了一种非侵入性策略来识别运动障碍及其由干预措施引起的变化。最新的仪器运动分析是时间和成本密集的,因为它需要放置物理或虚拟标记。除了标记训练或训练检测器所需的关键点或注释所需的努力外,用户还需要事先知道有趣的行为才能提供有意义的关键。我们引入了无监督的行为分析和放大倍数(UBAM),这是一种自动深度学习算法,用于通过发现和放大偏差来分析行为。中心方面是无监督的姿势和行为表征的学习,以实现运动的客观比较。除了发现和量化行为中的偏差外,我们还提出了一个生成模型,用于直接在视频中直接放大微妙行为差异,而无需通过关键点或注释进行绕道。即使在不同个体之间,这种偏差的放大至关重要的是对外观和行为的解开。对啮齿动物和人类患者患有神经系统疾病的评估证明了我们方法的广泛适用性。此外,将光遗传学刺激与我们的无监督行为分析相结合,表明其适合于非侵入性诊断工具与大脑可塑性相关的功能。

Motor behaviour analysis is essential to biomedical research and clinical diagnostics as it provides a non-invasive strategy for identifying motor impairment and its change caused by interventions. State-of-the-art instrumented movement analysis is time- and cost-intensive, since it requires placing physical or virtual markers. Besides the effort required for marking keypoints or annotations necessary for training or finetuning a detector, users need to know the interesting behaviour beforehand to provide meaningful keypoints. We introduce unsupervised behaviour analysis and magnification (uBAM), an automatic deep learning algorithm for analysing behaviour by discovering and magnifying deviations. A central aspect is unsupervised learning of posture and behaviour representations to enable an objective comparison of movement. Besides discovering and quantifying deviations in behaviour, we also propose a generative model for visually magnifying subtle behaviour differences directly in a video without requiring a detour via keypoints or annotations. Essential for this magnification of deviations even across different individuals is a disentangling of appearance and behaviour. Evaluations on rodents and human patients with neurological diseases demonstrate the wide applicability of our approach. Moreover, combining optogenetic stimulation with our unsupervised behaviour analysis shows its suitability as a non-invasive diagnostic tool correlating function to brain plasticity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源