论文标题
极化变暖的对称和反对称成分
Symmetric and antisymmetric components of polar-amplified warming
论文作者
论文摘要
CO $ _2 $ - 在一般循环模型中(GCM)中的表面变暖最初是在北极的,但不是南极的极性扩增 - 在很大程度上是半球性的抗对称信号。然而,我们在CESM1和11个LongrunMip GCM中表明,半球对称的成分是全球均值,区域均值变暖($ t^*_ \ MATHRM {sym} $),在4 \(\ times \)co $ _2 $下,在4 \(\ times \)co $ _2 $下较弱地变化或将更接近地分解。相反,反对称变暖的组件($ t^*_ \ mathrm {asym} $)在所有型号中都随着时间的流逝而削弱,其中包括著名但有效地消失在内的其他模型,包括CESM1。我们探讨了具有差异性的湿能平衡模型(MEBM)的强大$ t^*_ \ MATHRM {sym} $的机制,该模型(MEBM)给出了辐射反馈参数($λ$)($λ$)和海洋热量吸收($ \ \ \ \ m natercal {o}和$ t^*_ \ mathrm {asym} $ fields。在进一步的MEBM模拟中,$λ$和$ \ Mathcal {o} $,$ t^*_ \ mathrm {sym} $仅对其对称组件敏感,而对$λ$的组件更敏感。适合著名和CESM1的三箱,两次尺度的模型揭示了一个奇怪的南极快速响应时间尺度。在其他CESM1模拟中,跨越了更广泛的强大范围,$ t^*_ \ mathrm {sym} $在2-16 \(\ times \)co $ _2 $和$ t^*_ \ mathrm {sym} $中的$ polliecene Simulution in polarlifient and pollypliant Air-Alimpliant时,$ T^*_ \ Mathrm {sym} $适度地变化。确定这些行为的实际相关性 - 这意味着几十年来就出现了有关近乎平衡极性扩增的令人惊讶的信息 - 值得进一步研究。
CO$_2$-forced surface warming in general circulation models (GCMs) is initially polar-amplified in the Arctic but not Antarctic -- a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and eleven LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ($T^*_\mathrm{sym}$) under 4\(\times\)CO$_2$ changes weakly or becomes moderately more polar-amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ($T^*_\mathrm{asym}$) weakens with time in all models, moderately in some including FAMOUS but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust $T^*_\mathrm{sym}$ behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter ($λ$) and ocean heat uptake ($\mathcal{O}$) fields diagnosed from CESM1 adequately reproduces the CESM1 $T^*_\mathrm{sym}$ and $T^*_\mathrm{asym}$ fields. In further MEBM simulations perturbing $λ$ and $\mathcal{O}$, $T^*_\mathrm{sym}$ is sensitive to their symmetric components only, and more to that of $λ$. A three-box, two-timescale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response timescale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, $T^*_\mathrm{sym}$ changes modestly across 2-16\(\times\)CO$_2$, and $T^*_\mathrm{sym}$ in a Pliocene-like simulation is more polar-amplified but likewise approximately time-invariant. Determining the real-world relevance of these behaviors -- which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades -- merits further study.