论文标题

量子转向椭圆体的体积作为两数分状态的度量以及相关的可分离性和绝对可分离性比

Quantum Steering Ellipsoid Volume as a Measure on the Two-Qubit States and Associated Separability and Absolute Separability Ratios

论文作者

Slater, Paul B.

论文摘要

我们采用量子转向椭圆形(QSE)的数量作为在十五维凸的两分(两个Quibent)凸的量度上,我们估计该度量与可分离状态的积分与所有(可分离和纠缠)状态的积分的比率为0.0288。这可以与$ \ frac {8} {33} {33} = \ frac {2^3} {3 \ cdot 11} \大约0.242424 $和$ \ frac {25} {25} {341} = \ frac {341} {341} = \ frac {5^2} {5^2} {5^2} {5^2^{5^2} {5^2} {{5^2} {5^2} {5^2^2} 0.0733138 $各种形式的证据指出,分别使用了著名的希尔伯特·史克米特和Bures措施。 QSE设置中比率是否可以更精确地获得甚至精确计算的问题,以及是否可以构建度量,该指标得出的量元素得出的量元素仍待解决。我们还研究了与绝对可分离性有关的相关问题。此外,我们检查了可分离性概率的行为 - 在希尔伯特 - 雪橇案中的恒定剂,并在bures中减少 - 作为QSE实例中Bloch Vector Norm的函数。它似乎增加了接近纯状态边界。

Employing the volume of quantum steering ellipsoids (QSEs) as a measure on the fifteen-dimensional convex set of two-qubit states, we estimate the ratio of the integral of the measure over the separable states to its integral over all (separable and entangled) states to be 0.0288. This can be contrasted with the considerably larger separability ratios (probabilities) of $\frac{8}{33} = \frac{2^3}{3 \cdot 11} \approx 0.242424$ and $\frac{25}{341}=\frac{5^2}{11 \cdot 31} \approx 0.0733138$ that various forms of evidence point to with the use of the prominent Hilbert-Schmidt and Bures measures, respectively. The questions of whether the ratio in the QSE setting can be more precisely obtained or even exactly computed, as well as whether a metric can be constructed, the volume element of which yields the measure, remain to be addressed. We also investigate related issues pertaining to absolute separability. Further, we examine the behavior of the separability probability--constant in the Hilbert-Schmidt case and decreasing in the Bures--as a function of the Bloch vector norm in the QSE instance. It appears to increase approaching the pure state boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源