论文标题
电子商务多幕科建议的方案感知和基于共同的方法
Scenario-aware and Mutual-based approach for Multi-scenario Recommendation in E-Commerce
论文作者
论文摘要
推荐系统(RSS)对于电子商务平台可帮助满足用户的巨大需求至关重要。如何捕捉用户兴趣并为异类电子商务方案中的用户提出准确的建议仍然是一个持续的研究主题。但是,大多数现有的研究忽略了情景的内在关联:从平台收集的日志数据可以自然分为不同的场景(例如,国家,城市,文化)。 我们观察到,由于它们之间存在巨大差异,因此情景是异质的。因此,统一模型很难有效地捕获多种情况之间的复杂相关性(例如差异和相似性),从而严重降低了建议结果的准确性。 在本文中,我们针对电子商务中多幕科建议的问题,并提出了一个名为“方案 - 意识到的相互学习”的新型建议模型,该模型利用了多种方案之间的差异和相似之处。我们首先介绍了方案感知功能表示,该表示将嵌入和注意模块转换为并行映射到全局和方案特定的子空间中。然后,我们引入了一个辅助网络,以在所有情况下建模共享知识,并使用多支分支网络对特定方案之间的差异进行建模。最后,我们采用一个新颖的共同单位来适应地学习各种场景之间的相似性,并将其纳入多分支网络。我们对公共和工业数据集进行了广泛的实验,经验结果表明,SAML始终如一地优于最先进的方法。
Recommender systems (RSs) are essential for e-commerce platforms to help meet the enormous needs of users. How to capture user interests and make accurate recommendations for users in heterogeneous e-commerce scenarios is still a continuous research topic. However, most existing studies overlook the intrinsic association of the scenarios: the log data collected from platforms can be naturally divided into different scenarios (e.g., country, city, culture). We observed that the scenarios are heterogeneous because of the huge differences among them. Therefore, a unified model is difficult to effectively capture complex correlations (e.g., differences and similarities) between multiple scenarios thus seriously reducing the accuracy of recommendation results. In this paper, we target the problem of multi-scenario recommendation in e-commerce, and propose a novel recommendation model named Scenario-aware Mutual Learning (SAML) that leverages the differences and similarities between multiple scenarios. We first introduce scenario-aware feature representation, which transforms the embedding and attention modules to map the features into both global and scenario-specific subspace in parallel. Then we introduce an auxiliary network to model the shared knowledge across all scenarios, and use a multi-branch network to model differences among specific scenarios. Finally, we employ a novel mutual unit to adaptively learn the similarity between various scenarios and incorporate it into multi-branch network. We conduct extensive experiments on both public and industrial datasets, empirical results show that SAML consistently and significantly outperforms state-of-the-art methods.