论文标题
基本的自我相关性和$ l^2 $ -liouville物业
Essential self-adjointness and the $L^2$-Liouville property
论文作者
论文摘要
我们讨论了对称操作员的基本自我相互接合与在操作员伴随中的函数恒定之间之间的联系。然后,在laplacians在歧管和图形上,我们说明了这种关系。此外,我们讨论了绿色的功能,并且当它提供了可以正方形的非恒定谐波函数时。
We discuss connections between the essential self-adjointness of a symmetric operator and the constancy of functions which are in the kernel of the adjoint of the operator. We then illustrate this relationship in the case of Laplacians on both manifolds and graphs. Furthermore, we discuss the Green's function and when it gives a non-constant harmonic function which is square integrable.