论文标题
与物理无统治功能的秘密密钥协议:最佳摘要
Secret Key Agreement with Physical Unclonable Functions: An Optimality Summary
论文作者
论文摘要
我们从信息理论的最优性角度解决了数字设备和生物识别技术的安全性和隐私问题,其中生成了秘密密钥用于身份验证,识别,消息加密/解密或安全计算。物理上的不元件功能(PUF)是数字设备中本地安全性的有前途解决方案,本综述为信息理论家,编码理论家以及对最佳PUF构造感兴趣的社区成员提供了最相关的摘要。讨论了为了使信息理论分析所处理的低复杂信号处理方法,例如开发的转换编码。给出了多个PUF测量值的秘密钥匙,隐私裂口和存储率之间的最佳权衡。列出了共同设计矢量量化和错误校正代码参数的建议的最佳代码构造。这些结构包括现代和代数代码,例如极地代码和卷积代码,它们都可以在短块长度下实现较小的区块误差概率,对应于少量的PUF电路。列出了来自信号处理,信息理论,编码理论和硬件复杂性观点及其组合的PUF文献中的开放问题,以刺激有关局部隐私和安全性研究的进一步进步。
We address security and privacy problems for digital devices and biometrics from an information-theoretic optimality perspective, where a secret key is generated for authentication, identification, message encryption/decryption, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices and this review gives the most relevant summary for information theorists, coding theorists, and signal processing community members who are interested in optimal PUF constructions. Low-complexity signal processing methods such as transform coding that are developed to make the information-theoretic analysis tractable are discussed. The optimal trade-offs between the secret-key, privacy-leakage, and storage rates for multiple PUF measurements are given. Proposed optimal code constructions that jointly design the vector quantizer and error-correction code parameters are listed. These constructions include modern and algebraic codes such as polar codes and convolutional codes, both of which can achieve small block-error probabilities at short block lengths, corresponding to a small number of PUF circuits. Open problems in the PUF literature from a signal processing, information theory, coding theory, and hardware complexity perspectives and their combinations are listed to stimulate further advancements in the research on local privacy and security.