论文标题

朝着Lehel的猜想,以实现4均匀的紧身周期

Towards Lehel's conjecture for 4-uniform tight cycles

论文作者

Lo, Allan, Pfenninger, Vincent

论文摘要

$ k $均匀的紧身周期是$ k $均匀的超图,其顶点循环订购,因此其边缘是订购中$ k $连续的顶点形成的所有尺寸$ k $的集合。我们证明,每个红色蓝色边缘色$ k_n^{(4)} $都包含一个红色和蓝色的紧身周期,它们是顶点 - 偶数,一起覆盖$ n-o(n)$ vertices。此外,我们证明了每个红蓝色边缘色$ k_n^{(5)} $包含四个单色紧身循环,它们是顶点 - 偶数,一起覆盖$ n-o(n)$ pertices。

A $k$-uniform tight cycle is a $k$-uniform hypergraph with a cyclic ordering of its vertices such that its edges are all the sets of size $k$ formed by $k$ consecutive vertices in the ordering. We prove that every red-blue edge-coloured $K_n^{(4)}$ contains a red and a blue tight cycle that are vertex-disjoint and together cover $n-o(n)$ vertices. Moreover, we prove that every red-blue edge-coloured $K_n^{(5)}$ contains four monochromatic tight cycles that are vertex-disjoint and together cover $n-o(n)$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源