论文标题
负责使用可扩展指纹识别生成模型
Responsible Disclosure of Generative Models Using Scalable Fingerprinting
论文作者
论文摘要
在过去的几年中,深刻的生成模型已经达到了新的性能水平。生成的数据变得困难,即使不是不可能,也无法与实际数据区分开。尽管有很多用例受益于这项技术,但对于如何滥用这项新技术来产生深层假货并使错误的信息进行大规模误解,这也有很大的关注。不幸的是,由于真实和假货之间的差距继续缩小,当前的深层伪造方法是不可持续的。相比之下,我们的工作可以负责任地披露此类最先进的生成模型,该模型允许模型发明者可以指纹其模型,以便可以准确检测到包含指纹的生成样品并将其归因于源。我们的技术通过具有不同指纹的大量模型的有效且可扩展的大量生成来实现这一目标。我们推荐的操作点使用128位指纹,原则上会导致$ 10^{38} $可识别的模型。实验表明,我们的方法符合指纹机制的关键特性,并在深层的伪造检测和归因中实现有效性。代码和型号可从https://github.com/ningyu1991/scalableganfingerprints获得。
Over the past years, deep generative models have achieved a new level of performance. Generated data has become difficult, if not impossible, to be distinguished from real data. While there are plenty of use cases that benefit from this technology, there are also strong concerns on how this new technology can be misused to generate deep fakes and enable misinformation at scale. Unfortunately, current deep fake detection methods are not sustainable, as the gap between real and fake continues to close. In contrast, our work enables a responsible disclosure of such state-of-the-art generative models, that allows model inventors to fingerprint their models, so that the generated samples containing a fingerprint can be accurately detected and attributed to a source. Our technique achieves this by an efficient and scalable ad-hoc generation of a large population of models with distinct fingerprints. Our recommended operation point uses a 128-bit fingerprint which in principle results in more than $10^{38}$ identifiable models. Experiments show that our method fulfills key properties of a fingerprinting mechanism and achieves effectiveness in deep fake detection and attribution. Code and models are available at https://github.com/ningyu1991/ScalableGANFingerprints .