论文标题
Wheeler-Dewitt的点粒子量化
Wheeler-DeWitt quantization for point-particles
论文作者
论文摘要
我们介绍了与爱因斯坦重力及其规范量化的相对论点粒子的汉密尔顿公式。在所得的量子理论中,波功能是粒子坐标和3米的函数。它满足了特定的哈密顿和差异性约束,以及klein-gordon型方程。像惠勒 - 迪维特理论一样,波函数是与时间无关的。这也反映在不存在时间导数的klein-gordon型方程中。在考虑重力之前,我们考虑了粒子与电磁学的耦合,该粒子的处理方式类似,但更简单。
We present the Hamiltonian formulation of a relativistic point-particle coupled to Einstein gravity and its canonical quantization à la Wheeler-DeWitt. In the resulting quantum theory, the wave functional is a function of the particle coordinates and the 3-metric. It satisfies a particular Hamiltonian and diffeomorphism constraint, together with a Klein-Gordon-type equation. As usual in the Wheeler-DeWitt theory, the wave function is time-independent. This is also reflected in the Klein-Gordon-type equation, where the time derivative is absent. Before considering gravity, we consider the coupling of a particle with electromagnetism, which is treated similarly, but simpler.