论文标题

由于等离子体的动态摩擦而导致共振线的转移和分裂

Shifting and splitting of resonance lines due to dynamical friction in plasmas

论文作者

Duarte, V. N., Lestz, J. B., Gorelenkov, N. N., White, R. B.

论文摘要

一种准线性等离子体传输理论,结合了Fokker-Planck动力学摩擦(阻力)和俯仰角散射,是从第一原理中得出的,用于孤立的,边缘不稳定的模式,与能量的少数族裔共鸣。发现拖动从根本上改变了波颗粒共振的结构,打破了其对称性并导致共振线的转移和分裂。相反,散射以对称方式扩大共鸣。与完全非线性模拟的比较表明,所提出的准线性系统保留了确切的不稳定性饱和幅度和完全非线性理论的相应粒子重新分布。即使在阻力导致相对较小的共振转移的情况下,它仍然是共振粒子重新分布的重大变化。阻力的这种新型影响在等离子体和重力系统中同样重要。在融合等离子体中,这种效果对于以前的观察结果证明,这种效果对于具有低纵横比或负三角形的tokamaks中的快速驱动的不稳定性特别明显。相同的理论直接映射到其轨道上旋转银河棒和大量物体的共振动力学,提供了分析银河系动力学的新技术。

A quasilinear plasma transport theory that incorporates Fokker-Planck dynamical friction (drag) and pitch angle scattering is self-consistently derived from first principles for an isolated, marginally-unstable mode resonating with an energetic minority species. It is found that drag fundamentally changes the structure of the wave-particle resonance, breaking its symmetry and leading to the shifting and splitting of resonance lines. In contrast, scattering broadens the resonance in a symmetric fashion. Comparison with fully nonlinear simulations shows that the proposed quasilinear system preserves the exact instability saturation amplitude and the corresponding particle redistribution of the fully nonlinear theory. Even in situations in which drag leads to a relatively small resonance shift, it still underpins major changes in the redistribution of resonant particles. This novel influence of drag is equally important in plasmas and gravitational systems. In fusion plasmas, the effects are especially pronounced for fast-ion-driven instabilities in tokamaks with low aspect ratio or negative triangularity, as evidenced by past observations. The same theory directly maps to the resonant dynamics of the rotating galactic bar and massive bodies in its orbit, providing new techniques for analyzing galactic dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源