论文标题
有组织的随机:使用自组织地图学习和纠正儿童系统的系统星系聚类模式
Organised Randoms: Learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps
论文作者
论文摘要
我们提出了一种通过矫正随机星系目录在角星系聚类中缓解观察性系统效应的新方法。 Real and synthetic galaxy data, from the Kilo Degree Survey's (KiDS) 4$^{\rm{th}}$ Data Release (KiDS-$1000$) and the Full-sky Lognormal Astro-fields Simulation Kit (FLASK) package respectively, are used to train self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables,包括看见,银河尘的灭绝和银河恒星密度。然后,我们创建“有组织的”随机物,即具有空间数字密度的随机星系目录,模仿数据中学习的系统密度模式。使用现实偏见的模拟数据,我们表明这些随机人会从两点角相关函数$ w(\ vartheta)$中始终减去伪装密度模式,纠正高达$12σ$的偏见,在平均聚类幅度至0.1σ$的平均聚类幅度上,高达$0.1σ$,而不是$0.1σ$,而不是7-100的高信号到0.1σ$。与通过高度完整的光谱红移数据构建的类似样本相比,它们的性能也可以通过明亮的,通量限制的儿童为$ 1000 $的角度群体互相关验证。每个有组织的随机目录对象都是一个携带真实星系特性的“克隆”,并且根据父Galaxy在Systematics空间中的位置分布在整个调查足迹中。因此,子样本随机物很容易通过与真实星系相同的选择来从单个主体随机目录中得出。预计我们的方法将随着调查区域,星系数密度和系统污染的增加而提高性能,这使得有组织的随机物非常有前途,用于对微弱样品的当前和将来的聚类分析。
We present a new method for the mitigation of observational systematic effects in angular galaxy clustering via corrective random galaxy catalogues. Real and synthetic galaxy data, from the Kilo Degree Survey's (KiDS) 4$^{\rm{th}}$ Data Release (KiDS-$1000$) and the Full-sky Lognormal Astro-fields Simulation Kit (FLASK) package respectively, are used to train self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create `organised' randoms, i.e. random galaxy catalogues with spatially variable number densities, mimicking the learnt systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms consistently subtract spurious density modes from the two-point angular correlation function $w(\vartheta)$, correcting biases of up to $12σ$ in the mean clustering amplitude to as low as $0.1σ$, over a high signal-to-noise angular range of 7-100 arcmin. Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-$1000$, comparing against an analogous sample constructed from highly-complete spectroscopic redshift data. Each organised random catalogue object is a `clone' carrying the properties of a real galaxy, and is distributed throughout the survey footprint according to the parent galaxy's position in systematics-space. Thus, sub-sample randoms are readily derived from a single master random catalogue via the same selection as applied to the real galaxies. Our method is expected to improve in performance with increased survey area, galaxy number density, and systematic contamination, making organised randoms extremely promising for current and future clustering analyses of faint samples.