论文标题

热抗DE保姆空间中的超弦

Superstrings in Thermal Anti-de Sitter Space

论文作者

Ashok, Sujay K., Troost, Jan

论文摘要

我们通过Neveu-Schwarz-Neveu-Schwarz通量来重新访问三维抗DE保姆时空的弦乐理论的热自由能的计算。利用路径积分计算以确认脱壳希尔伯特空间,我们发现等轴测组的离散表示的卡西米尔以半开间的间隔进行值。我们将自由能计算扩展到SuperSrins的情况,计算Ramond-Ramond扇区中的边界环形扭曲分区函数,并从批量的角度证明了边界共形尺寸的下限。我们对Ramond-Ramond基础状态进行了分类,并构建其第二个量化分区函数。分区函数表现出有趣的模块化特性。

We revisit the calculation of the thermal free energy for string theory in three-dimensional anti-de Sitter spacetime with Neveu-Schwarz-Neveu-Schwarz flux. The path integral calculation is exploited to confirm the off-shell Hilbert space and we find that the Casimir of the discrete representations of the isometry group takes values in a half-open interval. We extend the free energy calculation to the case of superstrings, calculate the boundary toroidal twisted partition function in the Ramond-Ramond sector, and prove lower bounds on the boundary conformal dimension from the bulk perspective. We classify Ramond-Ramond ground states and construct their second quantized partition function. The partition function exhibits intriguing modular properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源