论文标题

探索轻量级分布检测的典型风险最小化

Exploring Vicinal Risk Minimization for Lightweight Out-of-Distribution Detection

论文作者

Ravikumar, Deepak, Kodge, Sangamesh, Garg, Isha, Roy, Kaushik

论文摘要

深度神经网络在解决从图像识别到自然语言处理的复杂任务方面发现了广泛的采用。但是,这些网络在呈现不属于培训分布的数据时(即分布式分布(OOD)样本)时会自信错误。在本文中,我们探讨了在不同类边界之间平稳插值的典型风险最小化(VRM)的特性是否有助于训练更好的OOD检测器。我们将VRM应用于现有的OOD检测技术,并显示其改进的性能。我们观察到现有的OOD探测器具有明显的内存和计算开销,因此我们利用VRM来开发具有最小听觉的OOD检测器。我们的检测方法引入了用于对OOD样品进行分类的辅助类。我们利用两种方式使用混合,以实施速度风险最小化。首先,我们在同一类中进行混合,其次,在训练辅助类时,我们用高斯噪声进行混合。与现有的OOD检测技术相比,我们的方法实现了几乎竞争性能,计算和内存开销明显较小。这促进了在边缘设备上的OOD检测部署,并扩展了我们对培训OOD检测器中使用的阴影最小化的理解。

Deep neural networks have found widespread adoption in solving complex tasks ranging from image recognition to natural language processing. However, these networks make confident mispredictions when presented with data that does not belong to the training distribution, i.e. out-of-distribution (OoD) samples. In this paper we explore whether the property of Vicinal Risk Minimization (VRM) to smoothly interpolate between different class boundaries helps to train better OoD detectors. We apply VRM to existing OoD detection techniques and show their improved performance. We observe that existing OoD detectors have significant memory and compute overhead, hence we leverage VRM to develop an OoD detector with minimal overheard. Our detection method introduces an auxiliary class for classifying OoD samples. We utilize mixup in two ways to implement Vicinal Risk Minimization. First, we perform mixup within the same class and second, we perform mixup with Gaussian noise when training the auxiliary class. Our method achieves near competitive performance with significantly less compute and memory overhead when compared to existing OoD detection techniques. This facilitates the deployment of OoD detection on edge devices and expands our understanding of Vicinal Risk Minimization for use in training OoD detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源