论文标题
实用的自动校准,可用于众包dashcamera视频的空间场景掌握
Practical Auto-Calibration for Spatial Scene-Understanding from Crowdsourced Dashcamera Videos
论文作者
论文摘要
空间场景的理解,包括密集的深度和自我估计,是自动驾驶汽车和高级驾驶员辅助系统的计算机视觉中的重要问题。因此,设计可以利用从任意车载或仪表板摄像头收集的众包视频的知觉模块是有益的。但是,与此类摄像机相对应的固有参数通常是未知或随着时间而变化的。典型的手动校准方法需要诸如棋盘或其他特定场景信息之类的对象。另一方面,自动摄像机校准没有此类要求。然而,随着向前和平面导航导致重建歧义的关键运动序列,仪表板摄像机的自动校准具有挑战性。可能包含数万张图像的完整视觉序列的结构重建在计算上也是站不住脚的。在这里,我们提出了一个用于众包视频的实用单程摄像头自动校准的系统。我们在不同条件下,我们在Kitti Raw,Oxford Robotcar和众包D $^2 $ -CITY数据集上展示了我们提出的系统的有效性。最后,我们演示了其在未校准的视频中进行准确的单眼密度深度和自我运动估计的应用。
Spatial scene-understanding, including dense depth and ego-motion estimation, is an important problem in computer vision for autonomous vehicles and advanced driver assistance systems. Thus, it is beneficial to design perception modules that can utilize crowdsourced videos collected from arbitrary vehicular onboard or dashboard cameras. However, the intrinsic parameters corresponding to such cameras are often unknown or change over time. Typical manual calibration approaches require objects such as a chessboard or additional scene-specific information. On the other hand, automatic camera calibration does not have such requirements. Yet, the automatic calibration of dashboard cameras is challenging as forward and planar navigation results in critical motion sequences with reconstruction ambiguities. Structure reconstruction of complete visual-sequences that may contain tens of thousands of images is also computationally untenable. Here, we propose a system for practical monocular onboard camera auto-calibration from crowdsourced videos. We show the effectiveness of our proposed system on the KITTI raw, Oxford RobotCar, and the crowdsourced D$^2$-City datasets in varying conditions. Finally, we demonstrate its application for accurate monocular dense depth and ego-motion estimation on uncalibrated videos.