论文标题

用于快照压缩成像的间隙网络

GAP-net for Snapshot Compressive Imaging

论文作者

Meng, Ziyi, Jalali, Shirin, Yuan, Xin

论文摘要

快照压缩成像(SCI)系统旨在使用2D探测器在单次拍摄中捕获高维($ \ ge3 $ d)的图像。 SCI设备包括两个主要部分:硬件编码器和软件解码器。硬件编码器通常由旨在捕获{压缩测量}的(光学)成像系统组成。另一方面,软件解码器是指从这些测量值中检索所需的高维信号的重建算法。在本文中,使用深层展开的想法,我们提出了一种SCI恢复算法,即GAP-NET,它展现了广义交替投影(GAP)算法。在每个阶段,GAP-NET通过训练有素的卷积神经网络(CNN)传递其对所需信号的当前估计。 CNN作为DeOiser运行,将估计值投射回所需的信号空间。对于采用训练有素的基于自动编码器的DENOISER的GAP网络,我们证明了概率的全球收敛结果。最后,我们研究了GAP-NET在解决视频SCI和Spectral SCI问题中的性能。在这两种情况下,GAP-NET都在合成数据和真实数据上都表现出竞争性能。除了具有高精度和高速度外,我们还表明,间隙 - 网络相对于信号调制而灵活,这意味着可以在不同的系统中应用训练有素的GAP-NET解码器。我们的代码在https://github.com/mengziyi64/admm-net上。

Snapshot compressive imaging (SCI) systems aim to capture high-dimensional ($\ge3$D) images in a single shot using 2D detectors. SCI devices include two main parts: a hardware encoder and a software decoder. The hardware encoder typically consists of an (optical) imaging system designed to capture {compressed measurements}. The software decoder on the other hand refers to a reconstruction algorithm that retrieves the desired high-dimensional signal from those measurements. In this paper, using deep unfolding ideas, we propose an SCI recovery algorithm, namely GAP-net, which unfolds the generalized alternating projection (GAP) algorithm. At each stage, GAP-net passes its current estimate of the desired signal through a trained convolutional neural network (CNN). The CNN operates as a denoiser that projects the estimate back to the desired signal space. For the GAP-net that employs trained auto-encoder-based denoisers, we prove a probabilistic global convergence result. Finally, we investigate the performance of GAP-net in solving video SCI and spectral SCI problems. In both cases, GAP-net demonstrates competitive performance on both synthetic and real data. In addition to having high accuracy and high speed, we show that GAP-net is flexible with respect to signal modulation implying that a trained GAP-net decoder can be applied in different systems. Our code is at https://github.com/mengziyi64/ADMM-net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源