论文标题

关于量子理论的可计算几何表达式

On Computable Geometric Expressions in Quantum Theory

论文作者

Greenwood, Ross N.

论文摘要

几何代数和微积分是数学语言,编码物理学理论似乎尊重的基本几何关系。我们提出标准,鉴于在量子理论中可以计算哪些几何代数中表达式的统计数据,以保留其代数特性的方式。他们是,必须能够通过乘以在状态空间上琐碎作用的代数的元素来任意地改变克利福德代数的基础;所有这些元素必须由对应于原始表达式中的因素而不是状态向量的操作员邻居。我们探讨了这些标准对动态多活动场物理学的后果。

Geometric Algebra and Calculus are mathematical languages encoding fundamental geometric relations that theories of physics seem to respect. We propose criteria given which statistics of expressions in geometric algebra are computable in quantum theory, in such a way that preserves their algebraic properties. They are that one must be able to arbitrarily transform the basis of the Clifford algebra, via multiplication by elements of the algebra that act trivially on the state space; all such elements must be neighbored by operators corresponding to factors in the original expression and not the state vectors. We explore the consequences of these criteria for a physics of dynamical multivector fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源