论文标题

群集,拆分,融合和更新:开放复合域自适应语义分段的元学习

Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation

论文作者

Gong, Rui, Chen, Yuhua, Paudel, Danda Pani, Li, Yawei, Chhatkuli, Ajad, Li, Wen, Dai, Dengxin, Van Gool, Luc

论文摘要

开放复合域Adaptation(OCDA)是一个域的适应设置,其中目标域被建模为多个未知均匀域的化合物,这带来了改善概括到未见域的优势。在这项工作中,我们通过连续对未标记的目标域进行建模,提出了一种基于元学习的原则性学习方法,用于语义分割,MOCDA。我们的方法包括四个关键步骤。首先,我们按图像样式将目标域聚集到多个子目标域中,以无监督的方式提取。然后,不同的子目标域分为独立的分支,为此,学会了批准参数以独立治疗它们。此后,部署了一个元学习者,以学会融合以样式代码为条件的子目标域特异性预测。同时,我们学会通过模型 - 敏捷的元学习(MAML)算法在线更新模型,从而进一步改善概括。我们通过广泛的实验对合成知识转移基准数据集验证方法的好处,在那里我们在化合物和开放域中实现了最先进的性能。

Open compound domain adaptation (OCDA) is a domain adaptation setting, where target domain is modeled as a compound of multiple unknown homogeneous domains, which brings the advantage of improved generalization to unseen domains. In this work, we propose a principled meta-learning based approach to OCDA for semantic segmentation, MOCDA, by modeling the unlabeled target domain continuously. Our approach consists of four key steps. First, we cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner. Then, different sub-target domains are split into independent branches, for which batch normalization parameters are learnt to treat them independently. A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code. Meanwhile, we learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization. We validate the benefits of our approach by extensive experiments on synthetic-to-real knowledge transfer benchmark datasets, where we achieve the state-of-the-art performance in both compound and open domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源