论文标题

用耳朵映射表面

Mapping Surfaces with Earcut

论文作者

Livesu, Marco

论文摘要

将形状映射到某些参数域是图形和科学计算的基本工具。实际上,两个形状之间的地图通常由两个具有相同连接性和不同嵌入的网格表示。标准方法是输入两个域之一的网格,以及将其边界投射到另一个域的函数,然后求解内部顶点的位置。受网格生成中基本原理的启发,在本文中,我们向读者展示了网格参数化的新观点:我们将连接性视为附加未知的,并假设我们的输入只是两个范围,它们封闭了我们想要连接的域。我们通过同时在两种形状内部生长相同的网格来计算地图。此视角的变化使我们能够将参数化问题重新销售为网格生成问题,从而允许访问这种设置中通常不使用的广泛成熟工具。我们的实际结果是实现算法的可证明但又很重要的,该算法将任何带有简单拓扑的平面形状映射到同型域,从内部凸内核中却薄弱地可见。此外,我们推测提出的想法可能扩展到体积图,列出了出现的主要挑战。与先前的方法不同,我们的分析是不可能的,我们的分析使我们有合理的希望,即通过兼容的网格生成可以获得强大的体积图生成。

Mapping a shape to some parametric domain is a fundamental tool in graphics and scientific computing. In practice, a map between two shapes is commonly represented by two meshes with same connectivity and different embedding. The standard approach is to input a meshing of one of the two domains plus a function that projects its boundary to the other domain, and then solve for the position of the interior vertices. Inspired by basic principles in mesh generation, in this paper we present the reader a novel point of view on mesh parameterization: we consider connectivity as an additional unknown, and assume that our inputs are just two boundaries that enclose the domains we want to connect. We compute the map by simultaneously growing the same mesh inside both shapes.This change in perspective allows us to recast the parameterization problem as a mesh generation problem, granting access to a wide set of mature tools that are typically not used in this setting. Our practical outcome is a provably robust yet trivial to implement algorithm that maps any planar shape with simple topology to a homotopic domain that is weakly visible from an inner convex kernel. Furthermore, we speculate on a possible extension of the proposed ideas to volumetric maps, listing the major challenges that arise. Differently from prior methods, for which we show that a volumetric extension is not possible, our analysis leaves us reasoneable hopes that the robust generation of volumetric maps via compatible mesh generation could be obtained in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源