论文标题
朝着开放且可扩展的认知AI体系结构,用于大规模多代理人类机器人协作学习
Towards open and expandable cognitive AI architectures for large-scale multi-agent human-robot collaborative learning
论文作者
论文摘要
从演示中学习(LFD)构成了构建有效的认知机器人系统的最强大方法之一。尽管已经报道了大量的研究工作,但当前的关键技术挑战包括多学科学习和长期自主权的挑战。向这个方向介绍了一种用于多代理LFD机器人学习的新型认知架构,以实现大规模和复杂环境中的开放,可扩展和可扩展的机器人系统的可靠部署。特别是,设计的建筑利用了人工智能(AI)领域的最新进展,建立了一个基于联合学习(FL)的框架来化身,用于化身一个多人多机器人的协作学习环境。基本的概念化依赖于采用多个AI-Empoperapity认知过程(实施各种机器人任务),这些过程在机器人平台网络的边缘节点上运行,而全球AI模型(基于上述机器人任务的基础)是在网络中共同创建和共享的网络中,通过大量人类互动的信息来优雅地组合信息,以优雅地组合信息。关于关键新颖性,设计的认知架构a)介绍了一种新的基于FL的形式主义,该形式性扩展了传统的LFD学习范式,以支持大型的多代理操作环境,b)以前的基于FL的自我学习机器人方案,以将人类的模型纳入学习循环和c),以使其在学习循环中融合了范围,并将其融合到基础上。机器人任务之间的多层相互依存。提出的框架的适用性使用了现实世界中的工业案例研究,用于基于敏捷生产的关键原材料(CRM)恢复。
Learning from Demonstration (LfD) constitutes one of the most robust methodologies for constructing efficient cognitive robotic systems. Despite the large body of research works already reported, current key technological challenges include those of multi-agent learning and long-term autonomy. Towards this direction, a novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems in large-scale and complex environments. In particular, the designed architecture capitalizes on the recent advances in the Artificial Intelligence (AI) field, by establishing a Federated Learning (FL)-based framework for incarnating a multi-human multi-robot collaborative learning environment. The fundamental conceptualization relies on employing multiple AI-empowered cognitive processes (implementing various robotic tasks) that operate at the edge nodes of a network of robotic platforms, while global AI models (underpinning the aforementioned robotic tasks) are collectively created and shared among the network, by elegantly combining information from a large number of human-robot interaction instances. Regarding pivotal novelties, the designed cognitive architecture a) introduces a new FL-based formalism that extends the conventional LfD learning paradigm to support large-scale multi-agent operational settings, b) elaborates previous FL-based self-learning robotic schemes so as to incorporate the human in the learning loop and c) consolidates the fundamental principles of FL with additional sophisticated AI-enabled learning methodologies for modelling the multi-level inter-dependencies among the robotic tasks. The applicability of the proposed framework is explained using an example of a real-world industrial case study for agile production-based Critical Raw Materials (CRM) recovery.