论文标题

一种新型的总和检测算法,用于快速发信号:一种深度学习方法

A Novel Sum-Product Detection Algorithm for Faster-than-Nyquist Signaling: A Deep Learning Approach

论文作者

Liu, Bryan, Li, Shuangyang, Xie, Yixuan, Yuan, Jinhong

论文摘要

本文提出了一种深度学习辅助辅助总产品检测算法(DL-SPDA),该算法(ftn)信号更快。提出的检测算法在修改的因子图上工作,该图将神经网络函数节点连接到常规FTN因子图的可变节点,以接近最大后验概率(MAP)错误性能。特定于修改因子图中的神经网络作为函数节点的性能处理,以处理剩余的隔膜干扰(ISI),而传统检测器未考虑具有有限的复杂性。我们在常规总和产物算法中修改更新规则,以便可以将神经网络辅助检测器补充为涡轮均衡接收器。此外,我们提出了一种兼容的培训技术,以提高涡轮均衡的拟议DL-SPDA的检测性能。特别是,神经网络是根据传输序列和外部信息之间的相互信息进行了优化的。我们还研究了有限长度编码的FTN系统的最大样品位错误率(BER)性能。仿真结果表明,所提出的算法的误差性能接近地图性能,这与分析性BER是一致的。

A deep learning assisted sum-product detection algorithm (DL-SPDA) for faster-than-Nyquist (FTN) signaling is proposed in this paper. The proposed detection algorithm works on a modified factor graph which concatenates a neural network function node to the variable nodes of the conventional FTN factor graph to approach the maximum a posterior probabilities (MAP) error performance. In specific, the neural network performs as a function node in the modified factor graph to deal with the residual intersymbol interference (ISI) that is not considered by the conventional detector with a limited complexity. We modify the updating rule in the conventional sum-product algorithm so that the neural network assisted detector can be complemented to a Turbo equalization receiver. Furthermore, we propose a compatible training technique to improve the detection performance of the proposed DL-SPDA with Turbo equalization. In particular, the neural network is optimized in terms of the mutual information between the transmitted sequence and the extrinsic information. We also investigate the maximum-likelihood bit error rate (BER) performance of a finite length coded FTN system. Simulation results show that the error performance of the proposed algorithm approaches the MAP performance, which is consistent with the analytical BER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源