论文标题
一种新型的总和检测算法,用于快速发信号:一种深度学习方法
A Novel Sum-Product Detection Algorithm for Faster-than-Nyquist Signaling: A Deep Learning Approach
论文作者
论文摘要
本文提出了一种深度学习辅助辅助总产品检测算法(DL-SPDA),该算法(ftn)信号更快。提出的检测算法在修改的因子图上工作,该图将神经网络函数节点连接到常规FTN因子图的可变节点,以接近最大后验概率(MAP)错误性能。特定于修改因子图中的神经网络作为函数节点的性能处理,以处理剩余的隔膜干扰(ISI),而传统检测器未考虑具有有限的复杂性。我们在常规总和产物算法中修改更新规则,以便可以将神经网络辅助检测器补充为涡轮均衡接收器。此外,我们提出了一种兼容的培训技术,以提高涡轮均衡的拟议DL-SPDA的检测性能。特别是,神经网络是根据传输序列和外部信息之间的相互信息进行了优化的。我们还研究了有限长度编码的FTN系统的最大样品位错误率(BER)性能。仿真结果表明,所提出的算法的误差性能接近地图性能,这与分析性BER是一致的。
A deep learning assisted sum-product detection algorithm (DL-SPDA) for faster-than-Nyquist (FTN) signaling is proposed in this paper. The proposed detection algorithm works on a modified factor graph which concatenates a neural network function node to the variable nodes of the conventional FTN factor graph to approach the maximum a posterior probabilities (MAP) error performance. In specific, the neural network performs as a function node in the modified factor graph to deal with the residual intersymbol interference (ISI) that is not considered by the conventional detector with a limited complexity. We modify the updating rule in the conventional sum-product algorithm so that the neural network assisted detector can be complemented to a Turbo equalization receiver. Furthermore, we propose a compatible training technique to improve the detection performance of the proposed DL-SPDA with Turbo equalization. In particular, the neural network is optimized in terms of the mutual information between the transmitted sequence and the extrinsic information. We also investigate the maximum-likelihood bit error rate (BER) performance of a finite length coded FTN system. Simulation results show that the error performance of the proposed algorithm approaches the MAP performance, which is consistent with the analytical BER.