论文标题
图像在语义和纹理的连贯先验的指导下介绍
Image Inpainting Guided by Coherence Priors of Semantics and Textures
论文作者
论文摘要
现有的介入方法在恢复特定场景的缺陷图像时已实现了有希望的性能。但是,由于晦涩的语义界限和不同语义纹理的混合物,涉及多个语义类别的填充孔仍然具有挑战性。在本文中,我们在语义和纹理之间介绍了连贯的先验,这使得以语义方式专注于完成单独的纹理是可能的。具体而言,我们采用多尺度的关节优化框架来首先建模相干先验,然后以粗到最新的方式进行交织,以相互交织来优化图像和语义分割。通过探索非本地语义连贯性,设计了语义范围的注意传播(交换)模块,以优化跨尺度的完整图像纹理,从而有效地减轻了纹理的混合。我们还提出了两种连贯性损失,以根据整体结构和详细的纹理来限制语义与成分图像之间的一致性。实验结果证明了我们提出的方法在挑战复杂孔的情况下的优势。
Existing inpainting methods have achieved promising performance in recovering defected images of specific scenes. However, filling holes involving multiple semantic categories remains challenging due to the obscure semantic boundaries and the mixture of different semantic textures. In this paper, we introduce coherence priors between the semantics and textures which make it possible to concentrate on completing separate textures in a semantic-wise manner. Specifically, we adopt a multi-scale joint optimization framework to first model the coherence priors and then accordingly interleavingly optimize image inpainting and semantic segmentation in a coarse-to-fine manner. A Semantic-Wise Attention Propagation (SWAP) module is devised to refine completed image textures across scales by exploring non-local semantic coherence, which effectively mitigates mix-up of textures. We also propose two coherence losses to constrain the consistency between the semantics and the inpainted image in terms of the overall structure and detailed textures. Experimental results demonstrate the superiority of our proposed method for challenging cases with complex holes.