论文标题

遥感中的物理意识到的高斯过程

Physics-Aware Gaussian Processes in Remote Sensing

论文作者

Camps-Valls, Gustau, Martino, Luca, Svendsen, Daniel H., Campos-Taberner, Manuel, Muñoz-Marí, Jordi, Laparra, Valero, Luengo, David, García-Haro, Francisco Javier

论文摘要

卫星感觉数据的地球观察带来了挑战性的问题,当前机器学习是关键人物。近年来,高斯过程(GP)回归在空中和卫星观测值的生物物理参数估计任务中表现出色。 GP回归基于实心贝叶斯统计数据,通常会产生有效,准确的参数估计。但是,GP通常用于基于并发观测和原位测量值的反向建模。经常可以使用编码国家向量与辐射观测之间牢固理解的物理关系的正向模型,但对于改善预测和理解可能是有用的。在这项工作中,我们回顾了三种GP模型,这些模型既尊重和学习在正向和反向建模的背景下的基础过程的物理学。在回顾了GP在参数检索中的传统应用后,我们引入了一个联合GP(JGP)模型,该模型将原位测量和模拟数据结合在单个GP模型中。然后,我们提出了用于GP建模的潜在力模型(LFM),该模型编码普通的微分方程,以将数据驱动的建模和系统管理方程式的物理约束融合。 LFM执行多输出回归,适应信号特征,能够应对时间序列中缺少的数据,并提供明确的潜在函数,以允许系统分析和评估。最后,我们提出了一个自动高斯工艺模拟器(AGAPE),该过程使用贝叶斯优化的概念近似前向物理模型,同时构建了一个最佳的紧凑型查找台,以进行反转。我们通过说明植被监测和大气建模的例子给出了这些模型表现的经验证据。

Earth observation from satellite sensory data poses challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression has excelled in biophysical parameter estimation tasks from airborne and satellite observations. GP regression is based on solid Bayesian statistics and generally yields efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations between the state vector and the radiance observations is available though and could be useful to improve predictions and understanding. In this work, we review three GP models that respect and learn the physics of the underlying processes in the context of both forward and inverse modeling. After reviewing the traditional application of GPs for parameter retrieval, we introduce a Joint GP (JGP) model that combines in situ measurements and simulated data in a single GP model. Then, we present a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical constraints of the system governing equations. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Finally, we present an Automatic Gaussian Process Emulator (AGAPE) that approximates the forward physical model using concepts from Bayesian optimization and at the same time builds an optimally compact look-up-table for inversion. We give empirical evidence of the performance of these models through illustrative examples of vegetation monitoring and atmospheric modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源