论文标题
nvidia simnet^{tm}:一个AI-Accelerated多物理模拟框架
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
论文作者
论文摘要
我们提出SIMNET,这是一个AI驱动的多物理模拟框架,以加速在科学和工程中广泛学科的模拟。与传统的数值求解器相比,SIMNET解决了广泛的用例 - 耦合的前向模拟,而没有任何培训数据,逆和数据同化问题。 SIMNET通过启用参数化的系统表示来提供快速的周转时间,该系统表示可以同时解决多种配置,而不是一次求解一种配置的传统求解器。 SIMNET与参数化的构建固体几何形状以及STL模块集成在一起,以生成点云。此外,它可以使用API自定义,使用户扩展到几何,物理和网络体系结构。它具有针对高性能GPU计算的高级网络体系结构,并具有可扩展的性能,可用于使用加速线性代数以及FP32,FP64和TF32计算的多GPU和多节点实现。在本文中,我们回顾了神经网络求解器方法,SIMNET体系结构以及有效解决PDE所需的各种功能。我们提出了现实世界中的用例,这些案例从具有湍流和复杂的3D几何形状的挑战性多物理模拟到工业设计优化和逆问题,这些问题无法有效解决传统求解器。 SIMNET结果与开源和商业求解器的广泛比较表现出良好的相关性。
We present SimNet, an AI-driven multi-physics simulation framework, to accelerate simulations across a wide range of disciplines in science and engineering. Compared to traditional numerical solvers, SimNet addresses a wide range of use cases - coupled forward simulations without any training data, inverse and data assimilation problems. SimNet offers fast turnaround time by enabling parameterized system representation that solves for multiple configurations simultaneously, as opposed to the traditional solvers that solve for one configuration at a time. SimNet is integrated with parameterized constructive solid geometry as well as STL modules to generate point clouds. Furthermore, it is customizable with APIs that enable user extensions to geometry, physics and network architecture. It has advanced network architectures that are optimized for high-performance GPU computing, and offers scalable performance for multi-GPU and multi-Node implementation with accelerated linear algebra as well as FP32, FP64 and TF32 computations. In this paper we review the neural network solver methodology, the SimNet architecture, and the various features that are needed for effective solution of the PDEs. We present real-world use cases that range from challenging forward multi-physics simulations with turbulence and complex 3D geometries, to industrial design optimization and inverse problems that are not addressed efficiently by the traditional solvers. Extensive comparisons of SimNet results with open source and commercial solvers show good correlation.