论文标题
锥形空间,模块化不变性和$ C_ {P,1} $全息图
Conical spaces, modular invariance and $c_{p,1}$ holography
论文作者
论文摘要
我们为二维对数的共形场理论带有负中央电荷$ C = c_ {p,1} = -6p +13-6 p^{ - 1} $的家族提出了一个非整体示例。我们认为,在$ $ p $的情况下,这些型号具有类似半经典的重力式描述,其中包含除全球广告$ _3 $ spacetime之外,还描述了圆锥形多余角度的孤子解决方案塔。证据来自以下事实:这种理论的中央电荷和自然模块化分区函数与$ c_ {p,1} $模型相吻合。这些理论具有延长的手性W-Algebra,其电流具有较大的顺序$ | c | $,并且在散装中被实现为旋转的锥形溶液。作为副产品,我们还找到了针对特殊Virasoro coadhexhexhexhexhexhexhexhexhexhexhexhexhexhexhechoint Orbits的几何作用的直接联系,该轨道描述了圆锥形空间周围的波动,以及Felder的自由场构造退化表示。
We propose a non-unitary example of holography for the family of two-dimensional logarithmic conformal field theories with negative central charge $c= c_{p,1} = - 6p +13 - 6 p^{-1}$. We argue that at large $p$, these models have a semiclassical gravity-like description which contains, besides the global AdS$_3$ spacetime, a tower of solitonic solutions describing conical excess angles. Evidence comes from the fact that the central charge and the natural modular invariant partition function of such a theory coincide with those of the $c_{p,1}$ model. These theories have an extended chiral W-algebra whose currents have large spin of order $|c|$, and which in the bulk are realized as spinning conical solutions. As a by-product we also find a direct link between geometric actions for exceptional Virasoro coadjoint orbits, which describe fluctuations around the conical spaces, and Felder's free field construction of degenerate representations.