论文标题
相干函子的扭转理论
Torsion theory of coherent functors
论文作者
论文摘要
令$ c $为带有Cokernels的添加剂类别,让Mod($ c $)是从$ c^{op} $到Abelian组的AB类别的添加剂函数的类别。令mod($ c $)为由连贯函数组成的mod($ c $)的完整子类别。在本文中,我们首先研究了$ c $中形态化的伪内核的一些基本特性。当$ c $具有伪内核时,mod($ c $)是阿贝里安(Abelian),然后在这种情况下,我们研究了激进的函子,一半精确的函子,左函数,左函数和mod($ c $)中的Injective对象。最后,我们扩展了mod($ c $)的结果。
Let $C$ be an additive category with cokernels and let Mod($C$) be the category of additive functors from $C^{op}$ to the category Ab of abelian groups. Let mod($C$) be the full subcategory of Mod($C$) consisting of coherent functors. In this paper, we first study some basic properties of pseudo-kernel of morphisms in $C$. When $C$ has pseudo-kernels, mod($C$) is abelian and then, in this case, we study radical functors, half exact functors, left exact functors and injective objects in mod($C$). At last, we extend the results for Mod($C$).