论文标题

使用“量子机械”操作员建造随机混合路径积分

Construction of stochastic hybrid path integrals using "quantum-mechanical'' operators

论文作者

Bressloff, Paul C.

论文摘要

随机混合系统涉及离散和连续随机过程之间的耦合。他们发现在细胞生物学中的应用增加,从建模基因网络中的启动子噪声到分析随机门控离子通道对单个神经元和神经网络中电压波动的影响。以前,我们基于Dirac Delta函数的整体表示,以相关的差异Chapman-Kolmogorov方程的方程来得出解决方案的路径积分表示,并使用它来确定噪声引起的``最小动作''路径在从亚稳态状态下的逃脱。在本文中,我们根据使用BRA-KET和``量子机械''运算符的使用,提出了路径积分的替代推导。我们展示了操作员方法如何为构建混合路径积分提供更有效,更灵活的框架,从而消除了以前的派生中的某些临时步骤,并在随机路径积分的一般理论方面提供了更多背景。我们还强调了主要特征值,频谱差距和Perron-Frobenius定理的重要作用。然后,我们使用扰动方法开发用于混合路径积分和相关矩生成功能的各种近似值。首先,我们考虑弱噪声极限的高斯近似值和循环扩展,类似于量子路径积分的半古典限制。其次,我们通过将随机混合系统视为Ornstein-Uhlenbeck过程的非线性扰动来确定弱耦合极限的类似物。这导致了自由繁殖者产品的瞬间扩展。

Stochastic hybrid systems involve the coupling between discrete and continuous stochastic processes. They are finding increasing applications in cell biology, ranging from modeling promoter noise in gene networks to analyzing the effects of stochastically-gated ion channels on voltage fluctuations in single neurons and neural networks. We have previously derived a path integral representation of solutions to the associated differential Chapman-Kolmogorov equation, based on integral representations of the Dirac delta function, and used this to determine ``least action'' paths in the noise-induced escape from a metastable state. In this paper we present an alternative derivation of the path integral, based on the use of bra-kets and ``quantum-mechanical'' operators. We show how the operator method provides a more efficient and flexible framework for constructing hybrid path integrals, which eliminates certain ad hoc steps from the previous derivation and provides more context with regards the general theory of stochastic path integrals. We also highlight the important role of principal eigenvalues, spectral gaps and the Perron-Frobenius theorem. We then use perturbation methods to develop various approximation schemes for hybrid path integrals and the associated moment generating functionals. First, we consider Gaussian approximations and loop expansions in the weak noise limit, analogous to the semi-classical limit for quantum path integrals. Second, we identify the analog of a weak-coupling limit by treating the stochastic hybrid system as the nonlinear perturbation of an Ornstein-Uhlenbeck process. This leads to an expansion of the moments in terms of products of free propagators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源