论文标题
$ \ mathbb {z} _2 $对称Georgi-Machacek模型的真空结构
Vacuum structure of the $\mathbb{Z}_2$ symmetric Georgi-Machacek model
论文作者
论文摘要
我们讨论了Georgi-Machecek模型版本的真空结构,并具有精确的$ \ mathbb {z} _2 $对称作用在三胞胎字段上。除了通常的托管对称模型(在Tree Level处具有$ρ= 1 $)外,具有暗物质候选人的模型也可行。该模型的其他阶段导致电荷断裂,electroweak对称性破坏的错误模式或在树级时为$ρ\ neq 1 $。我们得出条件在两个可行阶段中的每个阶段,即保管和暗物质阶段中具有绝对最小值。
We discuss the vacuum structure of a version of the Georgi-Machecek model with an exact $\mathbb{Z}_2$ symmetry acting on the triplet fields. Besides the usual custodial-symmetric model, with $ρ=1$ at tree-level, a model with a dark matter candidate is also viable. The other phases of the model lead to electric charge breaking, a wrong pattern of electroweak symmetry breaking or to $ρ\neq 1$ at tree-level. We derive conditions to have an absolute minimum in each of the two viable phases, the custodial and the dark matter phases.